

Kenkichi Miyabayashi (Nara Women's University) MENU2016 conference 2016 July 27th

Outline

- KEKB/Belle
- Production mechanisms of hadrons.
- X(3872); how we get its interpretation.
- Z_b^+ s at $\Upsilon(10860)$ and $\Upsilon(11020)$
- $Z_c(3900)^+$ at Y(4260) and similar states
- $Z_c(4430)^+$ and similar states found in B decays
- Challenges at SuperKEKB/Belle II
- Summary

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

"XYZ" sensations at Belle

What made it possible?

First of all, the world highest luminosity by KEKB. High resolution 4π spectrometer = Belle. Those two brought us possibilities to access;

- Various production mechanisms
 - Each physics process has preferable states.
 - Interplay among several approaches is effective.
- Various decay modes
 - Each hypothesis; other decay modes, partner states.
 - Partner states have specific decay modes.

Variety of recorded reactions

Everything started from this ...

X(3872); various decay modes

More decay modes

Information from a friendly competitor

Admixture : most plausible interpretation for X(3872)

S.Takeuchi, K.Shimizu and M.Takizawa, PTEP2014(2014)123D01

 $D\overline{D}^*$ component is coupled with the same $J^{PC} c\overline{c}, \chi_{c1}(2P)$ (unseen). \rightarrow can explain Br(X \rightarrow D⁰ \overline{D}^{*0})/Br(X \rightarrow J/ $\psi \pi^+\pi^-$) is about 10. \rightarrow pure molecule is too fragile to be produced in Tevatron/LHC. \rightarrow another $\chi_{c1}(2P)$ dominant state would become broad. Reaching such an interpretation is remarkable progress.

Charged states in bottomonium sector.

As for bottomonium more, listen Y.J.Kwon's talk on Friday

Z_b(10610)⁺ and Z_b(10650)⁺

Seen in all bottomonium π^{\pm} system at $\Upsilon(10860)$

$Z_{b}(10610)^{+} \rightarrow B\overline{B}^{*}, Z_{b}(10650)^{+} \rightarrow B^{*}\overline{B}^{*}$

Molecular picture works

B^{*} $\overline{B^{(*)}}$ dominant Br. Decays to Υ and h_b can co-exist.

J^P=1⁺ is supported by Dalitz analysis. arXiv:1403.0992.

$Z_{b}(10610)^{+}, Z_{b}(10650)^{+}$ →h_b(1P,2P) π⁺ at Υ(11020)

Z_C(3900)⁺ AT Y(4260) AND SIMILAR STATES

Analogous with Z_b s at $\Upsilon(10860)$

$Z_c(3900)^+$ at Y(4260) \rightarrow J/ $\psi \pi^+ \pi^-$

J^{PC}=1⁻ state decaying to quarkonium $\pi^+\pi^-$ contains charged state as an intermediate!

Z_c (4060)⁺ at Y(4360)→ψ(2S)π⁺π⁻

Again charged state as an intermediate!

Note

- BES III reported charged charmonium-like states;
 - $Z_c(3885)^{\pm}$ in (DD*)^{\pm}, $Z_c(4025)^{\pm}$ in (D*D*)^{\pm} and $Z_c(4020)^{\pm}$ in $h_c \ \pi^{\pm}$
 - Molecular picture look still working, however ...
- In bottomonium-like case, Z_b(10610)[±] and Z_b(10650)[±] look explain all the observed features, while there seems to be more in charmonium-like case depending on the decay final state.
- Does such difference give a hint to reveal the proper degree of freedom to form heavy hadrons?

Charged charmonium-like states produced in B decays

Z_c(4430)⁺ and SIMILAR STATES

Z(4430)[±] in ψ (2S) π [±] final state

Confirmation by LHCb

How about J/ $\psi \pi^{\pm}$ system?

PRD90,112009(2014)

Limitation with available statistics

Still many things we should attempt ...

CHALLENGES AT HIGHER STATISTICS

Partner states; a key to go further

For X(3872), no signature for

•Charged partner in J/ $\psi \pi^{+}\pi^{0}$. \rightarrow most likely, isospin=0.

•C=-1 partner in J/ $\psi \eta$ and $\chi_{c1} \gamma$. \rightarrow disfavor tetraquark hypothesis.

What does it mean?

If X(3872) is admixture of molecule and $\chi_{c1}(2P)$, its C-odd partner, J^{PC}=1⁺⁻ state, is

Hadronic decays or radiative decay to $\eta_c \rightarrow \text{low br. and S/N}$. $J^{PC}=1^{+-}$ is factorization disfavored, three-body $B \rightarrow h_c K \pi$ should be at first looked for. Higher statistics desirable. 29

Partner states of Z_b case

PRD88, 052016 (2013)

 $Z_b(10610)^0 \rightarrow \Upsilon (2S)\pi^0\pi^0$ seen 6.5 σ stat. significance $I^G=1^+$, first isospin partner among "XYZ".

 Partners may decay into χ_{bJ} (PRD86,014004(2012)).

$$- \ Z_b \to \chi_{bJ} \ \pi, \ Z_{b0} \to \chi_{bJ} \ \gamma$$

Br($\chi_{bJ} \rightarrow \Upsilon(1,2,3S)\gamma$) and γ efficiency are multiplied, signal yield may be lower one order of magnitude.

 \downarrow Higher statistics needed.

Charm baryon to check "di-quark"

- Thought to be a good place to check if "di-quarks" is behaving as a good degree of freedom to form hadrons.
- One of the constituent quark is heavy, correlation between the remaining light quarks would become clear.
- L_1 : ρ mode, L_2 : λ mode.

As for more detail, listen Y.Kato's talk on Friday.

Summary

- Molecular picture turned out to play important role near the threshold.
 - X(3872) : D⁰ $\overline{D^{*0}}$ and mixing with $\chi_{c1}(2P)$.
 - $Z_{b}(10610)^{+}$: B $\overline{B^{*}}$, $Z_{b}(10650)^{+}$: B* $\overline{B^{*}}$
- J^{PC}=1⁻ state decay contain a charged state as an intermediate in both charmonium-like and bottomonium-like cases.
- Searches for other partners states need more data.
 - Because of anticipated decay modes.
- Argand diagram approach only possible with Belle II statistics.

Variety of reactions; $X(3915)=\chi_{c0}(3915)$

