Systematic study of the vector meson spectral modification in the nuclear medium at J-PARC

Yusuke Komatsu for the J-PARC E16 collaboration RIKEN Nishina Center

MENU2016 @Kyoto University

Outline

- Introduction
- Motivation of the J-PARC E16 experiment
- Detector performance
- Simulation results
- Summary

Introduction

- Chiral symmetry is considered as the origin of hadron mass. chiral condensates: $<\overline{q}q>\neq 0$
- Chiral symmetry is predicted to be partially restored in hot and/or dense matter.
- The mass spectra of vector mesons in hot and/or dense environment have been investigated.
- Many experiments report the results of the spectral modification, but the origin is not figured out yet.

Experimental efforts

 The mass spectra of vector mesons in medium are investigated using reactions induced by heavy-ion, photon beam and proton beam.

	Reaction	\sqrt{s} NN [GeV/c ²]	Vector meson	
SPS-CERES	Pb+Au	17.3	ρ	
SPS-NA60	In+In	17.3	ρ	Heavy ion
RHIC-PHENIX	Au+Au	200	Mee<1 GeV/c ²	Treavy Ion
RHIC-STAR	Au+Au	200	Mee<1 GeV/c ²	
CBELSA-TAPS	γ+A	γ 0.64–2.53	ω	nhotoproduction
Jlab-CLAS	γ+A	γ 0.7–2.5	ρ	
KEK-E325	p+A	5.1	ρ,ω,φ	
GSI-HADES	p+A	3.2	Mee<0.7 GeV/c ²	

Experimental efforts

 The mass spectra of vector mesons in medium are investigated using reactions induced by heavy-ion, photon beam and proton beam.

KEKPS-E325 results

• 12 GeV p+A $\rightarrow \phi$ + X, $\phi \rightarrow e^+e^-$, C and Cu targets.

Model fit: parameters

- Generation point is uniform.
 -Woods-Saxon density distribution
 -Momentum is calculated by JAM.
- Decay in-flight -Based on Breit-Wigner shape. -Change of pole mass $m(\rho) = (1 - k_1 \frac{\rho}{\rho_0})m(0)$ -Width broadening $\Gamma(\rho) = (1 + k_2 \frac{\rho}{\rho_0})\Gamma(0)$

1e⁻

m(ρ)

KEKPS-E325 results: Model fit

- Significant excess in only $\beta \gamma_{\varphi}$ <1.25 with Cu target data.
- Model Fit (six spectra simultaneously) Δm (k1) ~ 0.034, ΔΓ (k2) ~2.6
- Model Fit only slow ϕ with Cu: $\Delta m (k1) \sim 0.031$, $\Delta \Gamma (k2) \sim 6.1$

X These two parameter sets are used in the following simulation.

Motivation:

What is important for further study?

- Mass spectrum itself. (Not only "shift" and/or "broadening")
- Dependence on target nucleus size and momentum of ϕ mesons.

- ϕ meson is a good probe!
 - Narrow natural width
 - No other resonance nearby
 - ϕ ->ee is free from final state interaction

But ...

- Branching ratio of ϕ ->ee is small. (~10⁻⁴)
- Life time of ϕ is relatively long.

High statistics is necessary.

New experiment, J-PARC E16 is proposed !

- New spectrometer at new beam line.
- High intensity 30 GeV proton beam 10¹⁰/spill.
- High statistics
- High mass resolution

In this presentation, the expected sensitivity of the J-PARC E16 experiment is reported.

J-PARC (Proton Accelerator Research Complex)

Beam Line at J-PARC Hadron Hall

Spectrometer

- Detectors are installed in a magnet.
- Mass resolution < 10 MeV/c^2 .
- π rejection <10⁻³.

Spectrometer

- Detectors are installed in a magnet.
- Mass resolution < 10 MeV/ c^2 .
- π rejection <10⁻³.

Trigger (third layer)

Spectrometer

- Detectors are installed in a magnet.
- Mass resolution < 10 MeV/ c^2 .
- π rejection <10⁻³.

8/26 modules will be installed for the first physics run.

In this presentation, the expected sensitivity for the first run is reported.

GEM Tracker

- Tracking with three layers of position sensitive chambers in a magnetic field.
- Gas Electron Multiplier (GEM) is used. The sizes are <u>10 cm x 10 cm</u>, <u>20 cm x 20 cm and 30 cm x 30 cm</u>.
- Triple GEM + 2D readout strips / chamber.
- We fabricated GEM <u>domestically</u>.
- Electronics: APV25-s1 chips.
- CFRP made frame

GEM Tracker

- Tracking position magnet
- Gas Electric used. Tl
 <u>20 cm x</u>
- Triple G chambe
- We fab
- Electro
- CFRP made frame

GEM Tracker: position resolution

- Analysis method for angled tracks
 - Timing information
- Sufficient performance event in a magnetic field.
- <u>Required position resolution of 100 um is achieved up to</u> <u>the incidence angle of 30 °.</u>

Hadron Blind Detector

- Mirrorless and Windowless Čerenkov Detector. Based on PHENIX HBD[3].
- Photocathode is developed successfully.
- ~11 p.e. is obtained for electron beam.
- Cluster size (# of hit pads) cut improves π rejection.
- π rejection power of 120 at *e* efficiency of 83% is achieved at beam test.

K. Kanno et al, Nucl. Instrum. Meth A 819, (2016)20.

Lead-glass calorimeter (LG)

- LG is placed behind HBD.
- eID with HBD. Separate e and π by signal amplitudes.
- Response to *e* and π is measured at J-PARC K1.1BR beam line.

Note: In offline analysis, threshold is changed according to π momentum. <u> π rejection factor of ~10 at 90% *e* efficiency (online).</u>

Summary of detector performance

- **GEM Tracker**: Position resolution of 100 μm is achieved for the incidence angle up to 30°.
- HBD & LG:

online trigger

eID eff 61% / π survival rate 0.2% (rejection 99.8%)

offline analysis eID eff 57% / π survival rate 0.03%

(rejection 99.97%)

Detector development is completed!

Next, we simulated the expected mass spectrum based on the achieved detector performance.

Monte-Carlo simulation

- Mass spectra of φ and background are simulated using Geant4.
- Detector material and detector performances are implemented.
- Background hits (5 kHz/mm² at 1x10¹⁰ proton/spill)
 - Beam halo, tracks from the target, room background, etc.
- Tracking
 - Signal response of GEM tracker is simulated and
 - it reproduces the position resolution of the GEM tracker.
 - COG + Timing method
 - Algorithm for clustering and track finding.
 - Combinatorial background

 -Uncorrelated pairs of <u>e⁺⁻ from π⁰ Dalitz decay and γ conversions</u>, and mis-identified π⁺⁻.
 - Momentum distributions of π^{+-0} are taken from JAM.

Simulation of mass spectrum Modification assumed for ϕ meson

- Same model used for fitting E325 results.
- Change of pole mass
- $m(\rho) = (1 k_1 \frac{\rho}{\rho_0})m(0)$ Width broadening

 $\Gamma(\rho) = (1 + k_2 \frac{\rho}{\rho_0}) \Gamma(0)$

In the simulation, ave. k1 = 0.034, k2= 2.6 slow k1 = 0.031, k2= 6.1 are used.

Simulated spectrum

- Expected spectrum for the first run of J-PARC E16 exp.
- Limited number of detector modules. (8/26)
- Beam intensity is 0.33x10¹⁰ proton/spill. (1/3 of planned intensity.)
- Target: Cu 80 μm x2
- 66days of data taking is assumed. (same as E325.)
- Trigger eff., eID eff., Tracking eff., Beam available eff., and DAQ live time are included.

Simulated spectrum: Fit with vacuum φ shape

- All $\beta \gamma$. Statistics of ϕ is $\sim x4$ of E325.
- Left: Fit in 0.85-1.2 GeV/c², Right: exclude 0.906- 1.004 GeV/c² from fit.
- Rejection power of χ^2 /ndf is significantly different.
- Unlike E325, we have sensitivity without selecting $\beta\gamma$.

$N_{ex}/(N_{\phi} + N_{ex})$

- Relative abundance in slow region with Cu target is large.
- $N_{ex}/(N_{\phi} + N_{ex})$ is apart from zero significantly in only slow ϕ with Cu.
- Error bars are statistical.

- E16, Cu(ave.): k1 = 0.034 and k2=2.6.
- E16, Cu(slow): k1 = 0.031 and k2=6.1.
- In E16 with Cu , error bars are <u>reduced compared to E325</u>.

- E16, Cu(ave.): k1 = 0.034 and k2=2.6.
- E16, Cu(slow): k1 = 0.031 and k2=6.1.
- In E16 with Cu , error bars are <u>reduced compared to E325</u>.

Summary

- Many experiments report spectral modification in dilepton spectra, but more systematic study is necessary.
- J-PARC E16 experiment is in preparation to measure φ meson mass in medium with high statistics and high mass resolution for the systematic studies.
 - System size dependence / dispersion relation
- Detector R&D is completed and the production is in progress.
- Sensitivity is evaluated by MC simulation for the expected E16 first run with limited detectors and beam intensity.
 <u>Even in these limited conditions, higher sensitivity to the</u> <u>spectral modification than KEK-PS E325.</u>
- Outlook:

Sensitivity on various predictions of spectral modification.

backup

Sensitivity for modification

- Number of φ w/o modification (=N_φ) and excess (=N_{ex}) are counted.
- Integral of the difference between the simulation data and fit result is N_{ex.}

KEKPS-E325 results: Model fit

- Significant excess in $\beta \gamma_{\varphi}$ <1.25 with Cu target.
- Model Fit (six spectra simultaneously)
 Δm (k1) ~ 0.034, ΔΓ (k2) ~ 2.6
- Model Fit only Cu in $\beta \gamma_{\phi} < 1.25$: Δm (k1) ~ 0.031 , ΔΓ (k2) ~ 6.1 ($\chi 2$ /ndf 66/48 (simul.) \rightarrow 63.4/48)

R. Muto Doctor thesis.

- E16, Cu(ave.): k1 = 0.034 and k2=2.6.
- E16, Cu(slow): k1 = 0.031 and k2=6.1.
- Error bars are statistical.
- In E16, Cu(slow), error bar is reduced compared to (ave.) and also better than E325 Cu.
 S/N is improved by a cut on charge and hit modules.

Simulated mass spectrum

- Modification parameter : measured by KEK-PS E325 for slow φ
- Beam intensity is 0.33x10¹⁰ proton/spill
- Yield (66days, same as E325.)
 φ: ~4000
 (cf). Nex+Nφ = 597
 @KEK-PS E325)
 BG sum: ~14000
 - Trigger eff., eID eff., Tracking eff., Beam available eff., and DAQ live time are included.

Sensitivity for modification

- Mass spectrum is fitted with exponential + vacuum φ.
- χ^2 /ndf are investigated for different fit regions.
- Mass spectrum cannot be fitted including the excess at the confidence level of 99.9%.
- The difference of rejection power shows a significance of the existence of mass modification.

