Progress in Baryon Spectroscopy at BESIII

Zhang Jingqing (for the BESIII Collaboration) Institute of High Energy Physics, CAS

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon July 25-30, 2016, Kyoto, Japan

Outline

Introduction

Recent BESIII results in Baryon Spectroscopy:

- Observation of $\psi' \rightarrow \Lambda \overline{\Sigma}^{\pm} \pi^{\mp} + c.c.$
- Observation of $J/\psi \rightarrow p\bar{p}a_0(980)$
- Measurement of $\psi' \to (\gamma) K^- \Lambda \overline{\Xi}^+ + c.c.$
- Measurement of $J/\psi(\psi') \to \Xi^-\overline{\Xi}^+, \Sigma(1385)^+\overline{\Sigma}(1385)^\pm$
- PWA of $\psi'
 ightarrow p ar{p} \pi^0$
- PWA of $\psi'
 ightarrow p \bar{p} \eta$

➢Summary

All results based on the data taken in 2009: 225 imes 10⁶ J/ψ events and 106 imes 10⁶ ψ' events

BEPCII and **BESIII**

うった

Storage ring

BESIII at BEPCII

Beam energy: 1-2.3 GeV Design Luminosity: 1×10^{33} cm⁻²s⁻¹

Linac

BESIII physics program

- Charmonium(-like) physics
- Light hadron spectroscopy
- Charm physics
- τ physics

The **BESIII** detector

Baryon spectroscopy

- Baryon spectroscopy is an important field to understand the internal structure of hadrons
- The established baryons are described by three-quark (qqq) configurations
- Non-relativistic quark model:
 - It is quite successful in interpreting baryon resonances

- It also provides an explicit classification for light baryons in terms of group symmetry.

- It tends of predict far more excited states than are found experimentally ("missing resonances problem")

- Theoretically: may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom (quark-diquark models)
- Experimentally: baryon resonances may couple very weakly to single pions

Baryon production

- Missing N*: maybe with small couplings to πN and γN , but large coupling to gggN: $\psi \rightarrow N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- High statistics of charmonimum at BESIII

 $\psi' \to \Lambda \overline{\Sigma}^{\pm} \pi^+ + c.c.$

BR first measurements:

 $M(\Lambda \pi)(GeV/c^2)$

 $\begin{aligned} &\mathcal{B}(\psi' \to \Lambda \bar{\Sigma}^+ \pi^- + c. c.) = (1.40 \pm 0.03 \pm 0.13) \times 10^{-4} \\ &\mathcal{B}(\psi' \to \Lambda \bar{\Sigma}^- \pi^+ + c. c.) = (1.54 \pm 0.04 \pm 0.13) \times 10^{-4} \\ &Q_{\Lambda \bar{\Sigma}^- \pi^+} = \frac{\mathcal{B}(\psi' \to \Lambda \bar{\Sigma}^- \pi^+)}{\mathcal{B}(J/\psi \to \Lambda \bar{\Sigma}^- \pi^+)} = (9.3 \pm 1.2)\% \end{aligned}$

- PWA used to determine detection efficiency
- Includes 16 possible intermediate excited states with at least two stars according to the PDG,

 $M(\overline{\Sigma}^{\dagger}\pi^{-})(GeV/c^{2})$

 $M(\Lambda \overline{\Sigma}^{T})(GeV/c^{2})$

(c)

Observation of $J/\psi \rightarrow p\bar{p}a_0(980)$

• First observation of $J/\psi \rightarrow p\bar{p}a_0(980)$, via $a_0(980) \rightarrow \pi^0 \eta$ PRD 90, 052009 (2014) $\mathcal{B}(J/\psi \to p\bar{p}a_0(980) \to p\bar{p}\pi^0\eta)$ 50 $= (6.8 \pm 1.2 \pm 1.3) \times 10^{-5}$ 400 Events/(20.0 MeV/c²) • Applies a chiral unitary coupled channel approach: 300 ✓ Four-body decays $J/\psi \to N\overline{N}MM$ 200 $\checkmark a_0(980)$ generated through **Final State Interactions** 100 Provides useful information on dynamics of 07 0.9 1.0 0.8 1.1 four-body FSI processes $M(\pi^0\eta)$ $M_{\pi^0 n}$ (GeV/c²) MC projection data 4.0 25 4.0 18 $M^2(\bar{p}\eta)$ 3.5 3.5 20 $(\underline{p}\underline{\eta})$ 12 15 3.0 3.0 10 M 2.5 2.5 2.02.01.5 1.5 2.5

1.0

1.0

 $M^2(n\pi^0)$

2.5

 $M^2(p\pi^0)$

8

$\psi' \to K^- \Lambda \bar{\Xi}^+ + c.c.$

- Two hyperons are observed in M(KΛ): Ξ(1690) and Ξ(1820)
- Both are well established states
- Resonance parameters consistent with PDG

- First measurement of branching ratio:
- $\mathcal{B}(\psi' \to K^- \Lambda \overline{\Xi}^+ + c.c.) = (3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$

$J/\psi(\psi') \rightarrow \Xi^- \overline{\Xi}^+ \text{ and } \Sigma(1385)^+ \overline{\Sigma}(1385)^\pm$

- First observation of ψ' into $\Sigma(1385)$ states
- Single tag method
- BR and angular distribution investigations
- Most precise measurement available

$J/\psi(\psi') \rightarrow \Xi^- \overline{\Xi}^+ \text{ and } \Sigma(1385)^+ \overline{\Sigma}(1385)^+$ PRD 93, 072003 (2016)

12% rule

$\Xi^-\overline{\Xi}^+$	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\overline{\Sigma}(1385)^{-}$		
$(26.73 \pm 0.50 \pm 2.30)\%$	$(7.76 \pm 0.55 \pm 0.68)\%$	$(6.68 \pm 0.40 \pm 0.50)\%$		
Branching Ratios				

Mode	$J/\psi ightarrow$			$\psi(3686) \rightarrow$			
	E- <u>Ē</u> +	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	Ξ-Ξ+	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	
This work	$10.40 \pm 0.06 \pm 0.74$	$10.96 \pm 0.12 \pm 0.71$	$12.58 \pm 0.14 \pm 0.78$	$2.78 \pm 0.05 \pm 0.14$	$0.85 \pm 0.06 \pm 0.06$	$0.84 \pm 0.05 \pm 0.05$	
MarkI [5]	14.00 ± 5.00			< 2.0			
MarkII [6]	$11.40 \pm 0.80 \pm 2.00$	$8.60 \pm 1.80 \pm 2.20$	$10.3 \pm 2.4 \pm 2.5$				
DM2 [7]	$7.00 \pm 0.60 \pm 1.20$	$10.00 \pm 0.40 \pm 2.10$	$11.9 \pm 0.4 \pm 2.5$				
BESII [8,12]	$9.00 \pm 0.30 \pm 1.80$	$12.30 \pm 0.70 \pm 3.00$	$15.0 \pm 0.8 \pm 3.8$	$3.03 \pm 0.40 \pm 0.32$			
CLEO [9]				$2.40 \pm 0.30 \pm 0.20$			
BESI [26]				$0.94 \pm 0.27 \pm 0.15$			
PDG [3]	8.50 ± 1.60	10.30 ± 1.30	10.30 ± 1.30	1.80 ± 0.60			

Angular distributions: $dN/d\cos\theta \propto 1 + \alpha \cos^2\theta$

Mode	$J/\psi \rightarrow$			$\psi(3686) \rightarrow$			
	≅- <u>₹</u> +	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	Ξ-Ξ+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	
This work	$0.58 \pm 0.04 \pm 0.08$	$-0.58 \pm 0.05 \pm 0.09$	$-0.49 \pm 0.06 \pm 0.08$	$0.91 \pm 0.13 \pm 0.14$	$0.64 \pm 0.40 \pm 0.27$	$0.35 \pm 0.37 \pm 0.10$	
BESII [8]	$0.35 \pm 0.29 \pm 0.06$	$-0.54 \pm 0.22 \pm 0.10$	$-0.35 \pm 0.25 \pm 0.06$				
MarkIII [6]	0.13 ± 0.55						
Claudson	0.16	0.11	0.11	0.32	0.29	0.29	
et al. [10]							
Carimalo [11]	0.27	0.20	0.20	0.52	0.50	0.50	

${\rm PWA} \ {\rm of} \ \psi' \rightarrow p \bar{p} \pi^0$

- In photon or meson beam studies, isospin ½ and 3/2 resonances are excited, complicating the analysis
- Δ resonances suppressed in charmonium decays to $p\bar{p}\pi^0$, giving a cleaner spectrum
- Considering the following decay in PWA:

PWA of $\psi' \rightarrow p \bar{p} \pi^0$

- ✓ Seven N* states are observed:
- Two new N* states: N(2300) and N(2570)
- Five well established N* states

	Resonance	$M(\text{MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	ΔS	$\Delta N_{ m dof}$	Sig.	
	N(1440)	1390^{+11+21}_{-21-30}	$340^{+46+70}_{-40-156}$	72.5	4	11.5 <i>o</i>	
	N(1520)	1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	19.8	6	5.0σ	
	N(1535)	1535^{+9+15}_{-8-22}	$120\substack{+20+0\\-20-42}$	49.4	4	9.3σ	()
	N(1650)	1650^{+5+11}_{-5-30}	150^{+21+14}_{-22-50}	82.1	4	12.2 <i>o</i>	A aTMIZ
	N(1720)	1700^{+30+32}_{-28-35}	$450^{+109+149}_{-94-44}$	55.6	6	9.6 <i>o</i>	C) /SIU
L/2+	N(2300)	$2300^{+40+109}_{-30-0}$	$340^{+30+110}_{-30-58}$	120.7	4	15.0 <i>o</i>	E Ve
5/2-	N(2570)	2570^{+19+34}_{-10-10}	250^{+14+69}_{-24-21}	78.9	6	11.7 <i>o</i>	

$\mathsf{PWA} \text{ of } \psi' \to p \bar{p} \eta$

- Intermediate state $N(1535) \rightarrow p\eta$ is dominant
- N(1535) combined with an interfering phase space is sufficient to describe the data
- No evidence for a $p\bar{p}$ resonance, indicating that the threshold enhancement in previous results may be explained by interference between the N(1535) and phase space

PWA of $\psi' \rightarrow p\bar{p}\eta$

• N(1535) description:

$$BW(s) = \frac{1}{M_{N^*}^2 - s - iM_{N^*}\Gamma_{N^*}(s)}, \Gamma_{N^*} = \Gamma_{N^*}^0 \left(0.5 \frac{\rho_{N\pi}(s)}{\rho_{N\pi}(M_{N^*}^2)} + 0.5 \frac{\rho_{N\eta}(s)}{\rho_{N\eta}(M_{N^*}^2)}\right),$$

- $\rho_{N\pi}/\rho_{N\eta}$ is the phase space factor for the $N\pi/N\eta$ final states: $\rho_{NX}(s) = \frac{2q_{NX}(s)}{\sqrt{s}} = \frac{\sqrt{(s - (M_N + M_X)^2)(s - (M_N - M_X)^2)}}{s}$
- N(1535) mass, width and product branching ratio:
- $M = 1524 \pm 5^{+10}_{-4} \text{MeV}/c^2$
- $\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}/c^2$

Consistent with previous measurements

• $\mathcal{B}(\psi' \to N(1535)\bar{p}) \times \mathcal{B}(N(1535) \to p\eta) = (5.2 \pm 0.3^{+3.2}_{-1.2}) \times 10^{-5}$

Summary

- BESIII collected 0.45 billion ψ' events and 1.3 billion J/ψ events
- Overview of recent results in the baryon spectroscopy
- Charmonium decays as powerful tool to investigate excited nucleons and hyperons
 - Discover new states
 - Provide complementary information to other experiments
- New results will be coming soon!

Thank you