

Open Charm Effects on the E1 Transition of $\psi(3686)/\psi(3770) \rightarrow \gamma \chi_{cJ}$

Zheng Cao

In collaboration with

Martin Cleven, Qian Wang and Qiang Zhao

Theoretical Physics Division, Institute of High Energy Physics, Beijing 29th, July, 2016 KYOTO UNIVERSITY

CHARMONIUM SPECTRUM

Charmonium Spectrum: QM Prediction[1] V.S. Exp. Data

Quark model works quite good in producing the charmonium spectrum. Even with a "naive" color Coulomb plus linear scalar potential we get a relatively successful description of the spectrum[2].

```
[1]S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)[2]E. Eichten et al., Phys. Rev. D 21 (1980) 203
```

QUARK MODEL POTENTIAL

Nonrelativistic potential model

$$V_{NR}^{c\bar{c}}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\tilde{\delta}_{\sigma}(r)\vec{S}_c\cdot\vec{S}_{\bar{c}}$$

Godfrey-Isgur relativized potential model

$$\begin{split} V_{GI}^{c\bar{c}}(r) &= -\frac{4}{3} \frac{\alpha_s(r)}{r} + br + H_{c\bar{c}}^{hyp} + H_{c\bar{c}}^{so} + H_A \\ H_{c\bar{c}}^{hyp} &= \frac{4\alpha_s(r)}{3m_c^2} \bigg[\frac{8\pi}{3} \tilde{\delta}_{\sigma}(r) \vec{S}_c \cdot \vec{S}_{\bar{c}} + \frac{1}{r^3} \bigg(\frac{3\vec{S}_c \cdot \vec{r} \vec{S}_{\bar{c}} \cdot \vec{r}}{r^2} - \vec{S}_c \cdot \vec{S}_{\bar{c}} \bigg) \bigg] \dots \end{split}$$

E1 transition width

$$\Gamma_{E1}\left(n^{2S+1}L_{J} \to n'^{2S'+1}L'_{J'} + \gamma\right) = \frac{4}{3}C_{fi}\delta_{SS'}e_{c}^{2}\alpha \left|\left\langle\psi_{f}|r|\psi_{i}\right\rangle\right|^{2}E_{\gamma}^{3}\frac{E_{f}^{c\bar{c}}}{M_{i}^{c\bar{c}}}$$

MOTIVATION

• We focus on the E1 transitions $\psi''/\psi' \rightarrow \gamma \chi_{cJ}$ and study the open charm effects as final state interactions for these processes for both ψ'' and ψ' are close to the $D\overline{D}$ threshold.

- Studying these effects help us better understand the long-standing $\rho\pi$ puzzle and the non- $D\overline{D}$ decay of ψ'' .
- Similar mechanism has been studied in the M1 transition of J/ψ and ψ' [5]comparing to the previous studies in quark model and lattice QCD.

[5]G. Li and Q. Zhao, Phys. Lett. B 670 (2008) 55

E1 TRANSITION IN QM

Channel	Ref. [2]/keV	Ref. [3]/keV	Ref. [4] /keV	<i>Ref.</i> [4]/keV	<i>Exp. data</i> /keV
$\psi^{\prime\prime} ightarrow \gamma \chi_{c0}$		299	403	213	198.56±25.54
$\psi^{\prime\prime} ightarrow \gamma \chi_{c1}$		99	125	77	67.46±7.85
$oldsymbol{\psi}^{\prime\prime} o oldsymbol{\gamma} oldsymbol{\chi}_{c2}$		3.88	4.9	3.3	<17.4
$\psi' o \gamma \chi_{c0}$	43.2	47	63	26	29.87±1.14
$\psi' ightarrow \gamma \chi_{c1}$	34	42.8	54	29	28.55±1.20
$\psi' ightarrow \gamma \chi_{c2}$	23.7	30.1	38	24	27.24±1.18

Table of the E1 decay width of $\psi''/\psi' \rightarrow \gamma \chi_{cJ}$ predicted by various QM model comparing with exp. data

Significant discrepancies between various QM predictions and experimental data.

[2]E. Eichten *et al.*, Phys. Rev. D 21 (1980) 203 [3]N. Brambilla *et al.*[Quarkonium Working Group Collaboration], hep-ph/0412158 [4] T. Barnes, S. Godfrey and E. S. Swanson, Phys. Rev. D 72 (2005) 054026

NONRELATIVISTIC EFFECTIVE FIELD THEORY

Heavy mesons:

 $H = P + \vec{\sigma} \cdot \vec{V}$

D-mesons:

$$P_D = (D^0, D^+, D_s); V_D = (D^{*0}, D^{*+}, D_s^*)$$

.....

Interaction Lagrangians with heavy mesons:

Not all the couplings here are clearly known

29/07/2016 KYOTO

OPEN CHARM EFFECTS

The coupling of ψ''/ψ' and two *D* mesons(pseudoscalar or vector) allows the open charm effects in the radiative E1 transition.

7

POWER COUNTING AND COUPLINGS

For the leading order terms, we use the Lagrangians

 $\mathcal{L}_{SP\gamma} = \mathbf{A} \langle \chi^{\dagger i} J \rangle E^{i} + h.c. \qquad \mathcal{L}_{DP\gamma} = \mathbf{B} \langle \chi^{\dagger i} J^{ij} \rangle E^{j} + h.c.$

- $igatharrow \, g_S$ is taken from Ref. [6] and g_D is fitted through the tree process $\, \psi^{\prime\prime} o D \overline{D} .$
- the photon magnetic coupling is introduced from Ref. [7].
- $\mathbf{a} \mathbf{g_1}$ is taken as a free parameter.
- Loop diagrams have divergence.

[6] G. Y. Chen and Q. Zhao, Phys. Lett. B 718 (2013) 1369

[7]J. Hu and T. Mehen, Phys. Rev. D 73 (2006) 054003

LOOP INTEGRALS WITH EXP. F.F.

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt$$

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} dt$$

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} dt$$

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt$$

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} dt$$

$$erf$$

[8] F. K. Guo, C. Hanhart, G. Li, U. G. Meisner and Q. Zhao, Phys. Rev. D 83 (2011) 034013

Z. Cao, Open Charm Effects

LOOP INTEGRALS WITH EXP. F.F.

$$I_{m} = \int \frac{d^{4}l}{(2\pi)^{4}} \frac{\tilde{l}^{2} \exp(-2\tilde{l}^{2}/\Lambda^{2})}{(l^{2} - m_{1}^{2} + i\epsilon)[(P - l)^{2} - m_{2}^{2} + i\epsilon]}$$

$$= \frac{i}{4m_{1}m_{2}} \frac{4\pi}{(2\pi)^{3}} \int_{0}^{\infty} dl \frac{\tilde{l}^{4} \exp(-2\tilde{l}^{2}/\Lambda^{2})}{P - m_{1} - m_{2} - (\tilde{l}^{2}/2\mu_{m}) + i\epsilon}$$

$$= \frac{-iexp(-2k^{2}/\Lambda^{2})}{8(m_{1} + m_{2})\pi^{2}} \left\{ \sqrt{\frac{\pi}{2}} \Lambda e^{2k^{2}/\Lambda^{2}} \frac{\Lambda^{2} + 4k^{2}}{4} + \pi(-k^{2} - i\epsilon)^{3/2} \left[1 - \exp\left(\frac{\sqrt{-2k^{2} - i\epsilon}}{\Lambda} \right) \right] \right\}$$

$$I_g = \int \frac{d^4 l}{(2\pi)^4} \frac{\exp(-2\vec{l}^2/\Lambda^2)}{(l^2 - m_1^2 + i\epsilon)[(P - l)^2 - m_2^2 + i\epsilon]}$$
$$= \frac{i}{4m_1m_2} \left\{ -\frac{\mu\Lambda}{(2\pi)^3} + \frac{\mu k}{2\pi} e^{-2k^2/\Lambda^2} \left[\operatorname{erfi}\left(\frac{\sqrt{2}k}{\Lambda}\right) - i \right] \right\}$$

FITTING PARAMETERS

• Fitted parameters with Λ dependence

	Λ(GeV)	χ^2 /d.o.f	$A(\text{GeV}^{-1})$	$B(GeV^{-1})$	$g_1(\text{GeV}^{-1/2})$	$oldsymbol{\delta}(^\circ)$
SU(2)	0.8	1.95	0.232	0.314	2.12	-119
	0.9	1.56	0.222	0.324	4.44	-114
	1.0	1.20	0.214	0.331	5.38	-109
	1.1	0.94	0.208	0.335	5.33	-106
	1.2	0.78	0.206	0.336	4.48	-105
SU(3)	0.8	1.61	0.219	0.326	4.52	-114
	0.9	1.16	0.209	0.332	5.39	-106
	1.0	0.88	0.205	0.335	4.69	-104
	1.1	0.74	0.207	0.335	3.38	-104
	1.2	0.66	0.209	0.334	2.49	-104

DECAY WIDTHS

$\Lambda =$ 1.0 GeV, SU(2) scheme

Fitting results in decay width comparing with exp. data and predictions in QM

- Fitting results for most channels work well.
- Fitting results for $\psi' \to \gamma \chi_{c2}$ can not match the data very well. We finally elimate this channel when fitting.

[3]N. Brambilla et al.[QWG Collaboration], hep-ph/0412158 [4] T. Barnes, S. Godfrey and E. S. Swanson, Phys. Rev. D 72 (2005) 054026

CONTRIBUTION OF LOOPS

Channel	Fitted width/keV	Without loops/keV
$\psi^{\prime\prime} ightarrow \gamma \chi_{c0}$	197	232
$\psi^{\prime\prime} ightarrow \gamma \chi_{c1}$	65.6	73.2
$\psi^{\prime\prime} ightarrow \gamma \chi_{c2}$	2.9	2.8
$oldsymbol{\psi}' o oldsymbol{\gamma} oldsymbol{\chi}_{c0}$	30.1	25.4
$\psi' ightarrow \gamma \chi_{c1}$	28.2	22.1
$oldsymbol{\psi}' ightarrow oldsymbol{\gamma} \chi_{c2}$	19.1	15.4

- The open charm effects play an important role in these E1 transitions.
- Loops diagrams give destructive contributions in $\psi' \rightarrow \gamma \chi_{cJ}$ channles and constructive contributions in $\psi'' \rightarrow \gamma \chi_{cJ}$ channels.

Mixing angle θ_{ψ} between ψ ' and ψ'' can be related via $|\xi_{\psi}(s)| = |\sin \theta_{\psi}|$ [9] where

$$|\xi_i(s)| = \left|\frac{D_{\psi'\psi''}}{D_i}\right| = \left|\frac{A_{\psi''\psi''}^{mixing}}{A_{\psi''\psi''}^{tree}}\right|$$

In this way we find that $\theta_{\psi'} = 8.1^{\circ}$ which is consistant with those extracted in Refs. [9][10].

[9] J. L. Rosner, Annals Phys. 319 (2005) 1

[10] Y. J. Zhang and Q. Zhao, Phys. Rev. D 81 (2010) 034011

SUMMARY

- We present a detailed study of the E1 transitions for $\psi'/\psi'' \rightarrow \gamma \chi_{cJ}$ in the NREFT where the subleading corrections arising from the charmed meson loops are consistently taken into account in the same framework.
- We find that the intermediate meson loops play an important role by introducing important interferences to the tree-level transitions.
- The open charm contribution from the triangle processes appears to be a general phenomenon that has brought a lot of interesting insights into the understanding of recent "XYZ" states. Meanwhile, as we have shown in this work, it can also produce sizable effects on processes where the dominant contribution is from the potential quark model.
- Further precise measurement of $\psi' \to \gamma \chi_{c2}$ will help clarify the underlying dynamics.

THANK YOU! ありがとうございます!