Octet Baryon Quark Flavor Distribution Functions

Harleen Dahiya

Department of Physics
Dr. B.R. Ambedkar National Institute of Technology
Jalandhar, INDIA

The 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon
(MENU 2016)
Kyoto, JAPAN
July 25-30, 2016
Outline

1. Internal Structure of the Baryons
2. Chiral Symmetry Breaking
3. Chiral Constituent Quark Model
4. Motivation
5. Purpose
6. Quark Flavor Distribution Functions
7. Flavor Structure Functions and the Gottfried Integral
8. Meson-Baryon Sigma Terms
9. Conclusions
Naive Quark Model

- **Internal Structure**: The knowledge of internal structure of nucleon in terms of quark and gluon degrees of freedom in QCD provide a basis for understanding more complex, strongly interacting matter.

- Knowledge has been rather limited because of **confinement** and it is still a big challenge to perform the calculations from the first principles of QCD.

- **Naive Quark Model** is able to provide a intuitive picture and successfully accounts for many of the low-energy properties of the hadrons in terms of the valence quarks.
Internal Structure of the Baryons

Fundamental quantities

- **Structure**: Magnetic moments
 - Dirac theory \((1.0 \, \mu_N)\) and experiment \((2.5 \, \mu_N)\).
 - Proton is not an elementary Dirac particle but has an inner structure.

- **Size**: Spatial extension.
 - Proton charge distribution given by charge radius \(r_p\).

- **Shape**: Nonspherical charge distribution.
 - Quadrupole moment of the transition \(N \rightarrow \Delta\).

- Relation between the properties??
Quantum Chromodynamics (QCD): Present Theory of Strong Interactions

- At high energies, \((\alpha_s \text{ is small})\), QCD can be used perturbatively.
- At low energies, \((\alpha_s \text{ becomes large})\), one has to use other methods such as effective Lagrangian models to describe physics.
- Wide range of applications ranging from the dynamics and structure of hadrons and nuclei to the properties and phases of hadronic matter at the earliest stages of the universe.
- New experimental tools are continually being developed to probe the non-perturbative structure of the theory, for example the hard diffractive reactions, semi-inclusive reactions, deeply virtual Compton scattering etc..
- Many fundamental questions have not been resolved. The most challenging nonperturbative problem in QCD is to determine the structure and spectrum of hadrons in terms of their quark and gluon degrees of freedom.
Proton Spin Problem: The driving question

- 1988 European Muon Collaboration (Valence quarks carry 30% of proton spin)
- Naive Quark Model contradicts this results (Based on Pure valence description: proton = 2u + d)
 "Proton spin crisis"
- Confirmed by the measurements of polarized structure functions of proton in the deep inelastic scattering (DIS) experiments by SMC, E142-3 and HERMES experiments.
- Provides evidence that the valence quarks of proton carry only a small fraction of its spin suggesting that they should be surrounded by an indistinct sea of quark-antiquark pairs.
Flavor Structure

1991 NMC result: Asymmetric nucleon sea ($\bar{d} > \bar{u}$)
Recently confirmed by E866 and HERMES

Measured quark sea asymmetry established that the study of the structure of the nucleon is intrinsically a nonperturbative phenomena.

Sum Rules

- **Bjorken Sum Rule:** $\Delta_3 = \Delta u - \Delta d$
- **Ellis-Jaffe Sum Rule:** $\Delta_8 = \Delta u + \Delta d - 2\Delta s$
 (Reduces to $\Delta_8 = \Delta \Sigma$ when $\Delta s = 0$)
- **Strange quark fraction:** $f_s \simeq 0.10$
- **Gottfried Sum Rule:** $l_G = \frac{1}{3} + \frac{2}{3} \int_0^1 [\bar{u}(x) - \bar{d}(x)] dx = 0.254 \pm 0.026$
Quark Sea

- Recently, a wide variety of accurately measured data have been accumulated for static properties of hadrons: masses, electromagnetic moments, charge radii etc.

- Low energy dynamical properties: scattering lengths and decay rates etc.

- These lie in the nonperturbative range of QCD and require nonperturbative methods. The direct calculations of these quantities form the first principle of QCD are extremely difficult.

- Flavor and spin structure of the nucleon is not limited to u and d quarks only. Nonperturbative effects explained only through the generation of “quark sea”.

- Techniques such as lattice gauge theory, QCD sum rules, and a wide variety of models have been developed to study this extremely interesting energy regime.
Pion Cloud Mechanism

- Quark sea is believed to originate from process such as virtual pion production.

- It is suggested that in the deep inelastic lepton-nucleon scattering, the lepton probe also scatters off the pion cloud surrounding the target proton. The $\pi^+(\bar{d}u)$ cloud, dominant in the process $p \rightarrow \pi^+ n$, leads to an excess of \bar{d} sea.

- However, this effect should be significantly reduced by the emissions such as $p \rightarrow \Delta^{++} + \pi^-$ with $\pi^- (\bar{u}d)$ cloud. Therefore, the pion cloud idea is not able to explain the significant $\bar{d} > \bar{u}$ asymmetry.

- This approach can be improved upon by adopting a mechanism which operates in the *interior* of the hadron.
Chiral Symmetry Breaking

The dynamics of light quarks (u, d, and s) and gluons can be described by the QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} G_{a\mu\nu}^a G^{a\mu\nu} + i \bar{\psi}_R D^\mu \psi_R + i \bar{\psi}_L \not{D} \psi_L - \bar{\psi}_R M \psi_L - \bar{\psi}_L M \psi_R ,$$

$G_{a\mu\nu}^a$ is the gluonic gauge field strength tensor, D^μ is the gauge-covariant derivative, M is the quark mass matrix and ψ_L and ψ_R are the left and right handed quark fields.

Mass terms change sign as $\psi_R \rightarrow \psi_R$ and $\psi_L \rightarrow -\psi_L$ under the chiral transformation ($\psi \rightarrow \gamma^5 \psi$), the Lagrangian no longer remains invariant. If neglected, the Lagrangian will have global chiral symmetry of the $SU(3)_L \times SU(3)_R$ group. Hadrons do not display parity doublets \rightarrow the chiral symmetry is believed to be spontaneously broken around a scale of 1 GeV as

$$SU(3)_L \times SU(3)_R \rightarrow SU(3)_{L+R} .$$
As a consequence, there exists a set of massless particles, referred to as the Goldstone bosons (GBs), which are identified with the observed (π, K, η mesons).

Within the region of QCD confinement scale ($\Lambda_{QCD} \simeq 0.1 - 0.3$ GeV) and the chiral symmetry breaking scale $\Lambda_{\chi SB}$, the constituent quarks, the octet of GBs (π, K, η mesons), and the weakly interacting gluons are the appropriate degrees of freedom.

The effective interaction Lagrangian in this region can be expressed as

$$\mathcal{L}_{int} = \bar{\psi}(i\partial + V)\psi + ig_{A}\bar{\psi}A\gamma^5\psi + \cdots,$$

where g_{A} is the axial-vector coupling constant. The gluonic degrees of freedom can be neglected owing to small effect in the effective quark model at low energy scale. The vector and axial-vector currents V_{μ} and A_{μ} are defined as

$$\begin{pmatrix} V_{\mu} \\ A_{\mu} \end{pmatrix} = \frac{1}{2}(\xi^{\dagger}\partial_{\mu}\xi \pm \xi\partial_{\mu}\xi^{\dagger}),$$

where $\xi = \exp(2i\Phi/f_{\pi})$, f_{π} is the pseudoscalar pion decay constant ($\simeq 93$ MeV).
The field Φ describes the dynamics of GBs as

$$
\Phi = \begin{pmatrix}
\frac{\pi^0}{\sqrt{2}} + \beta \frac{\eta}{\sqrt{6}} & \pi^+ & \alpha K^+ \\
\pi^- & -\frac{\pi^0}{\sqrt{2}} + \beta \frac{\eta}{\sqrt{6}} & \alpha K^0 \\
\alpha K^- & \alpha \bar{K}^0 & -\beta \frac{2\eta}{\sqrt{6}}
\end{pmatrix}.
$$

Expanding V_μ and A_μ in the powers of Φ/f_π, we get

$$
V_\mu = 0 + O\left((\Phi/f_\pi)^2\right),
$$

$$
A_\mu = \frac{i}{f_\pi} \partial_\mu \Phi + O\left((\Phi/f_\pi)^2\right).
$$

The effective interaction Lagrangian between GBs and quarks from in the leading order can now be expressed as

$$
\mathcal{L}_{\text{int}} = -\frac{g_A}{f_\pi} \bar{\psi} \gamma^\mu \gamma^5 \psi \partial_\mu \Phi,
$$

which using the Dirac equation $(i\gamma^\mu \partial_\mu - m_q)q = 0$ can be reduced to

$$
\mathcal{L}_{\text{int}} \approx i \sum_{q=u,d,s} \frac{m_q + m_q'}{f_\pi} \bar{q}' \Phi \gamma^5 q = i \sum_{q=u,d,s} c_8 \bar{q}' \Phi \gamma^5 q.
$$
\(c_8 \left(= \frac{m_q + m_{q'}}{f_\pi} \right)\) is the coupling constant for octet of GBs and \(m_q (m_{q'})\) is the quark mass parameter. The Lagrangian of the quark-GB interaction, suppressing all the space-time structure to the lowest order, can now be expressed as

\[
\mathcal{L}_{\text{int}} = c_8 \bar{\psi} \Phi \psi.
\]

The QCD Lagrangian is also invariant under the axial \(U(1)\) symmetry, which would imply the existence of ninth GB. This breaking symmetry picks the \(\eta'\) as the ninth GB.

The effective Lagrangian describing interaction between quarks and a nonet of GBs, consisting of octet and a singlet, can now be expressed as

\[
\mathcal{L}_{\text{int}} = c_8 \bar{\psi} \Phi \psi + c_1 \bar{\psi} \frac{\eta'}{\sqrt{3}} \psi = c_8 \bar{\psi} \left(\Phi + \zeta \frac{\eta'}{\sqrt{3}} I \right) \psi = c_8 \bar{\psi} (\Phi') \psi,
\]

where \(\zeta = c_1 / c_8\), \(c_1\) is the coupling constant for the singlet GB and \(I\) is the \(3 \times 3\) identity matrix.
The Chiral Constituent Quark Model (CQM) initiated by Weinberg and developed by Manohar and Georgi to explain the successes of NQM. The fluctuation process describing the effective Lagrangian is:

\[q^\pm \rightarrow GB + q'^\mp \rightarrow (q\bar{q}') + q'^\mp, \]

where \(q\bar{q}' + q' \) constitute the sea quarks. The model incorporates confinement and chiral symmetry breaking. “Justifies” the idea of constituent quarks and scope of the model extended in the context of “proton spin crisis”.
The GB field can be expressed in terms of the GBs and their transition probabilities as

$$
\Phi' = \begin{pmatrix}
\frac{\pi^0}{\sqrt{2}} + \beta \frac{\eta}{\sqrt{6}} + \zeta \frac{\eta'}{\sqrt{3}} & \pi^+ & \alpha K^+ \\
\pi^- & -\frac{\pi^0}{\sqrt{2}} + \beta \frac{\eta}{\sqrt{6}} + \zeta \frac{\eta'}{\sqrt{3}} & \alpha K^0 \\
\alpha K^- & \alpha K^0 & -\beta \frac{2\eta}{\sqrt{6}} + \zeta \frac{\eta'}{\sqrt{3}}
\end{pmatrix}.
$$

The transition probability of chiral fluctuation $u(d) \rightarrow d(u) + \pi^+(-)$ is introduced by considering nondegenerate quark masses $M_s > M_{u,d}$. In terms of a, the probabilities of transitions of $u(d) \rightarrow s + K^{+(0)}$, $u(d, s) \rightarrow u(d, s) + \eta$, and $u(d, s) \rightarrow u(d, s) + \eta'$ are given as $\alpha^2 a$, $\beta^2 a$ and $\zeta^2 a$ respectively.

The parameters α and β are introduced by considering nondegenerate GB masses $M_K, M_\eta > M_\pi$ and the parameter ζ is introduced by considering $M_{\eta'} > M_K, M_{\eta}$. The hierarchy for the probabilities, which scale as $\frac{1}{M_q^2}$, can be obtained as

$$
a > a\alpha^2 \geq a\beta^2 > a\zeta^2.
$$
Successes of χCQM

- “Proton Spin Problem”
- Magnetic moments of octet and decuplet baryons including their transitions and the Coleman-Glashow sum rule.
- Hyperon β decay parameters including the axial-vector coupling parameters F and D.
- Magnetic moments of octet baryon resonances as well as Λ resonances.
- Charge radii and quadrupole moment of the baryons.
- Small intrinsic charm content in the nucleon spin in the SU(4) χCQM and the magnetic moment and charge radii of charm baryons including their radiative decays.
Motivation

- Recently, experiments (SAMPLE at MIT-Bates, G0 at JLab, PVA4 at MAMI and HAPPEX at JLab) measuring the weak and electromagnetic form factors from the elastic scattering of electrons provided considerable insight on the role played by strange quarks in the charge, current and spin structure of the nucleon when the nucleon interacts at high energies.

- Major surprise was found in the flavor structure when the famous DIS experiments by the New Muon Collaboration (NMC) in 1991 established the sea quark asymmetry of the unpolarized quarks by measuring the violation of the Gottfried sum rule \(\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \).

- Confirmed by two independent experiments in various \(0 \leq x \leq 1 \) ranges. Fermilab E866 experiments, measuring a large sea quark asymmetry ratio \(\bar{d}/\bar{u} \) as well as \(\bar{d} - \bar{u} \neq 0 \). Drell-Yan cross section ratios of the NA51 experiments. HERMES presented sea quark asymmetry \(\frac{\bar{d} - \bar{u}}{u - d} \).
Motivation

- The information on the strange sea is obtained from the neutrino-induced DIS experiments as well as through the charm production with dimuon events in the final states of the experiments CDHS, CCFR, CHARMII, NOMAD, NuTeV and CHORUS.

- Neutrino-induced DIS experiments emphasized that the valence quark distributions dominate for $x > 0.3$ and it is a relatively clean region to test the valence structure of the nucleon as well as to estimate the structure functions and related quantities, whereas the sea quarks dominate for the $x < 0.3$. Renewed considerable interest in the sea quark flavor structure as well as asymmetries and they point out the need for additional refined data.

- Ongoing Drell-Yan experiment at Fermilab and a proposed experiment at J-PARC facility are working towards extending the kinematic coverage and improving the accuracy of the sea quark asymmetry.
In the context of low-energy experiments, the pion-nucleon sigma term \((\sigma_{\pi N})\) has received much attention in the past. It has been determined precisely from the pion-nucleon scattering experiments as well as hadron spectroscopy. The results from both the methods however differ substantially.

The \(\sigma_{\pi N}\) term has intimate connection with the dynamics of the non-valence quarks and is an important fundamental parameter to test the chiral symmetry breaking effects and thereby determine the scalar quark content of the nucleon.

It also provides restriction on the contribution of strangeness to the parameters measured in low-energy.

Our experimental information about the other meson-baryon sigma terms \(\sigma_{\pi B}\), \(\sigma_{KB}\), and \(\sigma_{\eta B}\), for the case of \(N\), \(\Sigma\), \(\Xi\) and \(\Lambda\) baryons, is also rather limited because of the difficulty in the measurements due to their short lifetimes. The low-energy determination of \(\sigma_{MB}\) would undoubtedly provide vital clues to the nonperturbative aspects of QCD.
Purpose

- To determine the quark flavor distribution functions of the octet baryons.
- Understand the implications of the scalar density matrix elements of octet baryons in terms of the valence and sea quark flavor distribution functions.
- Calculate sea quark asymmetries, fractions of quarks and antiquarks present in a baryon, flavor structure functions and the Gottfried integral.
- Predict the meson-baryon sigma terms $\sigma_{\pi B}$, σ_{KB}, and $\sigma_{\eta B}$ for the case of N, Σ, Ξ and Λ baryons.
- Provide important constraints on the future experiments to describe the role of non-valence degrees of freedom.
The quark flavor distribution functions can be calculated from the scalar matrix elements of the octet baryons

\[\hat{B} \equiv \langle B | N_{q\bar{q}} | B \rangle, \]

\[|B\rangle \] is the SU(6) baryon wavefunction and \(N_{q\bar{q}} \) is the number operator measuring the sum of the quark and antiquark numbers

\[N_{q\bar{q}} = \sum_{q=\text{u,d,s}} (n_q q + n_{\bar{q}} \bar{q}) = n_u u + n_{\bar{u}} \bar{u} + n_d d + n_{\bar{d}} \bar{d} + n_s s + n_{\bar{s}} \bar{s} \]

\[= (n_u - n_{\bar{u}}) u + (n_d - n_{\bar{d}}) d + (n_s - n_{\bar{s}}) s, \]

the coefficients \(n_q (\bar{q}) \) being the number of \(q (\bar{q}) \) quarks with electric charge \(e_q (e_{\bar{q}}) \).

Contribution from the valence as well as the sea quark distribution functions

\[q^B = q^B_V + q^B_S, \]

Antiquark distribution functions come purely from the sea quarks

\[q^B = q^B_V + \bar{q}^B. \]
Fraction of particular quark and antiquark present in a baryon relative to the total number of the quarks and antiquarks

\[f_q^B = \frac{q^B + \bar{q}^B}{\sum(q^B + \bar{q}^B)} , \]

where \(q^B \) and \(\bar{q}^B \) are the number of quarks and antiquarks for the octet baryon \(B \) and \(\sum(q^B + \bar{q}^B) \) is the sum of all the quarks and antiquarks present.

Further, we can define

\[f_0^B = f_u^B + f_d^B + f_s^B , \]
\[f_3^B = f_u^B - f_d^B , \]
\[f_8^B = f_u^B + f_d^B - 2f_s^B . \]
Important to understand the effective degrees of freedom of QCD in the nonperturbative regime are the suppression factors (ρ^B and κ^B) of the strange quark content with respect to the non-strange quarks and sea quarks are

$$\rho^B_s = \frac{s^B + \bar{s}^B}{u^B + d^B},$$
$$\kappa^B_s = \frac{s^B + \bar{s}^B}{\bar{u}^B + \bar{d}^B},$$

and the ratio of total number of the antiquarks and quarks

$$\frac{\sum \bar{q}^B}{\sum q^B}.$$
The sea quark flavor distribution functions can be calculated by substituting for every valence (constituent) quark

\[q \rightarrow P_q q + |\psi(q)|^2, \]

where the transition probability of no emission of GB \(P_q \) can be expressed in terms of the transition probability of the emission of a GB from any of the \(u, d, s \) quark as follows

\[P_q = 1 - P_{[q, \ GB]}, \]

with

\[P_{[u, \ GB]} = P_{[d, \ GB]} = a \left(\frac{3}{2} + \alpha^2 + \frac{\beta^2}{6} + \frac{\zeta^2}{3} \right), \]

\[P_{[s, \ GB]} = a \left(2\alpha^2 + \frac{2\beta^2}{3} + \frac{\zeta^2}{3} \right). \]
The transition probability

\[|\psi(u)|^2 = a \left(\frac{7}{4} + \beta + \frac{\zeta}{3} + \frac{\beta \zeta}{9} + \alpha^2 + \frac{7 \beta^2}{36} + \frac{4 \zeta^2}{9} \right) u + \left[\frac{1}{4} + \beta + \frac{\zeta}{3} + \frac{\beta \zeta}{9} + \frac{\beta^2}{36} + \frac{\zeta^2}{9} \right] \bar{u} \]

\[+ \left[\frac{5}{4} - \frac{\beta}{6} - \frac{\zeta}{3} + \frac{\beta \zeta}{9} + \frac{\beta^2}{36} + \frac{\zeta^2}{9} \right] (d + \bar{d}) + \left[-\frac{2 \beta \zeta}{9} + \alpha^2 + \frac{\beta^2}{9} + \frac{\zeta^2}{9} \right] (s + \bar{s}), \]

\[|\psi(d)|^2 = a \left(\frac{7}{4} + \beta + \frac{\zeta}{3} + \frac{\beta \zeta}{9} + \alpha^2 + \frac{7 \beta^2}{36} + \frac{4 \zeta^2}{9} \right) d + \left[\frac{1}{4} + \beta + \frac{\zeta}{3} + \frac{\beta \zeta}{9} + \frac{\beta^2}{36} + \frac{\zeta^2}{9} \right] \bar{d} \]

\[+ \left[\frac{5}{4} - \frac{\beta}{6} - \frac{\zeta}{3} + \frac{\beta \zeta}{9} + \frac{\beta^2}{36} + \frac{\zeta^2}{9} \right] (u + \bar{u}) + \left[-\frac{2 \beta \zeta}{9} + \alpha^2 + \frac{\beta^2}{9} + \frac{\zeta^2}{9} \right] (s + \bar{s}), \]

\[|\psi(s)|^2 = a \left(\frac{4 \beta \zeta}{9} + 2 \alpha^2 + \frac{10 \beta^2}{9} + \frac{4 \zeta^2}{9} \right) s + \left[\frac{4 \beta \zeta}{9} + \frac{4 \beta^2}{9} + \frac{\zeta^2}{9} \right] \bar{s} \]

\[+ \left[-\frac{2 \beta \zeta}{9} + \alpha^2 + \frac{\beta^2}{9} + \frac{\zeta^2}{9} \right] (u + \bar{u} + d + \bar{d}). \]

The flavor structure for the baryon of the type \(B(q_1 q_2 q_3) \) for the case of octet baryons having \(q_1, q_2, q_3 = u, d, s \) is expressed as

\[P_{q_1} q_1 + P_{q_2} q_2 + P_{q_3} q_1 + |\psi(q_1)|^2 + |\psi(q_2)|^2 + |\psi(q_3)|^2. \]
<table>
<thead>
<tr>
<th>Quantity</th>
<th>(B \rightarrow)</th>
<th>(N)</th>
<th>(\Sigma)</th>
<th>(\Xi)</th>
<th>(\Lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{u}^B)</td>
<td>0.221</td>
<td>0.099</td>
<td>0.947</td>
<td>0.217</td>
<td></td>
</tr>
<tr>
<td>(\overline{d}^B)</td>
<td>0.339</td>
<td>0.335</td>
<td>0.213</td>
<td>0.217</td>
<td></td>
</tr>
<tr>
<td>(\overline{s}^B)</td>
<td>0.091</td>
<td>0.068</td>
<td>0.046</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td>(\overline{u}^B / \overline{d}^B)</td>
<td>0.652</td>
<td>0.295</td>
<td>0.445</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\overline{u}^B - \overline{d}^B)</td>
<td>-0.118</td>
<td>-0.236</td>
<td>-0.118</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\[
f_u^B = \frac{u^B + \overline{u}^B}{\sum (u^B + \overline{u}^B)} = 0.567
\]

\[
f_d^B = \frac{d^B + \overline{d}^B}{\sum (d^B + \overline{d}^B)} = 0.390
\]

\[
f_s^B = \frac{s^B + \overline{s}^B}{\sum (s^B + \overline{s}^B)} = 0.042
\]

\[
f_0^B = f_u^B + f_d^B + f_s^B = 1
\]

\[
f_3^B = f_u^B - f_d^B = 0.177
\]

\[
f_8^B = f_u^B + f_d^B - 2f_s^B = 0.874
\]

\[
f_3^B \quad f_8^B
\]

\[
\rho_s^B = \frac{s^B + \overline{s}^B}{u^B + \overline{d}^B} = 0.051
\]

\[
\kappa_s^B = \frac{s^B + \overline{s}^B}{\overline{u}^B + d^B} = 0.323
\]

\[
\sum \overline{q}^B \quad \sum q^B
\]

\[
\frac{0.178}{0.143} \quad \frac{0.105}{0.143}
\]
The present experimental situation, for the case of \(N \), as obtained from the DIS and Drell-Yan experiments:

\[
\begin{align*}
\bar{u}^N - \bar{d}^N_{\text{NMC}} &= -0.147 \pm 0.024, \\
\bar{u}^N / \bar{d}^N_{\text{NA51}} &= 0.51 \pm 0.09, \\
\bar{u}^N - \bar{d}^N_{\text{E866}} &= -0.118 \pm 0.018, \\
\bar{u}^N / \bar{d}^N_{\text{E866}} &= 0.67 \pm 0.06, \\
f_s^N_{\text{CCFR}} &= 0.076 \pm 0.02, \\
f_3^N / f_8^N_{\text{CCFR}} &= 0.21 \pm 0.05, \\
\rho_s^N_{\text{CCFR}} &= 0.099 \pm 0.009, \\
\kappa_s^N_{\text{CCFR}} &= 0.477 \pm 0.051, \\
\sum \bar{q}^N / \sum q^N &= 0.245 \pm 0.005.
\end{align*}
\]
The NQM predictions

\[\bar{u}^N - \bar{d}^N = 0, \]

\[\bar{u}^N / \bar{d}^N = -1, \]

\[f_s^N = 0, \]

\[f_3^N / f_8^N = \frac{1}{3}, \]

\[\rho_s^N = 0, \]

\[\kappa_s^N = 0, \]

\[\sum \bar{q} / \sum q = 0. \]
The important measurable quark distribution functions look to be in agreement with the most recent phenomenological/experimental results available which the NQM is unable to explain.

Our results for the quantities discussed above are also in agreement with the results predicted by other model calculations.

The results strengthens the qualitative and quantitative role of the sea quarks in right direction indicating that the chiral symmetry breaking as well as SU(3) symmetry breaking are essential to understand the significant role played by the strange quarks in the nucleon.
The basic flavor structure functions F_1 and F_2 are defined as

$$F_2^B(x) = x \sum_{u,d,s} e_q^2 [q^B(x) + \bar{q}^B(x)],$$

$$F_1^B(x) = \frac{1}{2x} F_2^B(x).$$

Structure function F_2 for the baryons

$$F_2^p(x) = \frac{4}{9} x \left(u^p(x) + 2 \bar{u}^p(x) \right) + \frac{1}{9} x \left(d^p(x) + 2 \bar{d}^p(x) + s^p(x) + 2 \bar{s}^p(x) \right),$$

$$F_2^{\Sigma^+}(x) = \frac{4}{9} x \left(u^{\Sigma^+}(x) + 2 \bar{u}^{\Sigma^+}(x) \right) + \frac{1}{9} x \left(d^{\Sigma^+}(x) + 2 \bar{d}^{\Sigma^+}(x) + s^{\Sigma^+}(x) + 2 \bar{s}^{\Sigma^+}(x) \right),$$

$$F_2^{\Xi^0}(x) = \frac{4}{9} x \left(u^{\Xi^0}(x) + 2 \bar{u}^{\Xi^0}(x) \right) + \frac{1}{9} x \left(d^{\Xi^0}(x) + 2 \bar{d}^{\Xi^0}(x) + s^{\Xi^0}(x) + 2 \bar{s}^{\Xi^0}(x) \right),$$

$$F_2^{\Lambda^0}(x) = \frac{4}{9} x \left(u^{\Lambda^0}(x) + 2 \bar{u}^{\Lambda^0}(x) \right) + \frac{1}{9} x \left(d^{\Lambda^0}(x) + 2 \bar{d}^{\Lambda^0}(x) + s^{\Lambda^0}(x) + 2 \bar{s}^{\Lambda^0}(x) \right).$$
The Gottfried integrals

\[I_{G}^{\rho n} \equiv \int_{0}^{1} \frac{F_{2}^{\rho}(x) - F_{2}^{n}(x)}{x} dx = \frac{1}{3} + \frac{2}{3} [\bar{u}^{\rho} - \bar{d}^{\rho}] , \]

\[I_{G}^{\Sigma^{+}\Sigma^{0}} \equiv \int_{0}^{1} \frac{F_{2}^{\Sigma^{+}}(x) - F_{2}^{\Sigma^{0}}(x)}{x} dx = \frac{1}{3} + \frac{2}{9} [4 \bar{u}^{\Sigma^{+}} + \bar{d}^{\Sigma^{+}} - 4 \bar{u}^{\Sigma^{0}} - \bar{d}^{\Sigma^{0}}] , \]

\[I_{G}^{\Sigma^{0}\Sigma^{-}} \equiv \int_{0}^{1} \frac{F_{2}^{\Sigma^{0}}(x) - F_{2}^{\Sigma^{-}}(x)}{x} dx = \frac{1}{3} + \frac{2}{9} [4 \bar{u}^{\Sigma^{0}} + \bar{d}^{\Sigma^{0}} - 4 \bar{d}^{\Sigma^{-}} - \bar{u}^{\Sigma^{-}}] , \]

\[I_{G}^{\Xi^{-}\Xi^{0}} \equiv \int_{0}^{1} \frac{F_{2}^{\Xi^{-}}(x) - F_{2}^{\Xi^{0}}(x)}{x} dx = \frac{1}{3} + \frac{2}{3} [\bar{u}^{\Xi^{-}} - \bar{d}^{\Xi^{0}}] . \]

Normalization conditions

\[\int_{0}^{1} \bar{d}^{n}(x) dx = \int_{0}^{1} \bar{u}^{p}(x) dx , \quad \int_{0}^{1} \bar{u}^{n}(x) dx = \int_{0}^{1} \bar{d}^{p}(x) dx , \quad \int_{0}^{1} \bar{s}^{n}(x) dx = \int_{0}^{1} \bar{s}^{p}(x) dx , \]

\[\int_{0}^{1} \bar{u}^{\Xi^{-}}(x) dx = \int_{0}^{1} \bar{d}^{\Xi^{0}}(x) dx , \quad \int_{0}^{1} \bar{d}^{\Xi^{-}}(x) dx = \int_{0}^{1} \bar{u}^{\Xi^{0}}(x) dx , \quad \int_{0}^{1} \bar{s}^{\Xi^{-}}(x) dx = \int_{0}^{1} \bar{s}^{\Xi^{0}}(x) dx . \]
A measurement of the Gottfried integral for the case of nucleon has shown a clear violation of Gottfried sum rule from $\frac{1}{3}$ which can find its explanation in a global quark sea asymmetry $\int_0^1 (\bar{d}(x) - \bar{u}(x))dx$ measured in the NMC and E866 experiments.

The numerical values of the Gottfried integrals are

\[
\begin{align*}
I^p_n G &= 0.254, \\
I^{\Sigma^+ + \Sigma^0}_G &= 0.640, \\
I^{\Sigma^0 + \Sigma^-}_G &= 0.569, \\
I^{\Xi^0 + \Xi^-}_G &= 0.254.
\end{align*}
\]

We have $I^p_n G = \frac{1}{3} + \frac{2}{3} \left[\bar{u}^p - \bar{d}^p \right] = 0.266 \pm 0.005$ from the NMC results and $I^p_n G = 0.254 \pm 0.005$ from the E866 results.

No experimental results are available for the other octet baryons, new experiments aimed at measuring the flavor content of the other octet baryons are needed.
Meson-Baryon Sigma Terms

- The meson-baryon sigma term (σ_{MB}) corresponding to the pseudoscalar mesons and octet baryons is affected by the contributions of the sea quark.
- In terms of the scalar quark content ($\langle q\bar{q}\rangle_M$) of the particular meson M (π, K and η)

\[
\sigma_{MB} = \hat{m} \langle B | (q\bar{q})_M | B \rangle,
\]

\hat{m} is the average value of current u d and s quark masses evaluated at fixed gauge coupling. For example, we have

\[
\sigma_{\pi B} = \hat{m} \langle B | \bar{u}u + \bar{d}d | B \rangle.
\]

- The kaon-nucleon sigma term (σ_{KB}) in terms of the scalar quark content of u and d quarks

\[
\sigma_{KB} = \frac{\sigma_{KB}^u + \sigma_{KB}^d}{2}.
\]
\(\sigma_{KB}^u = \frac{\hat{m} + m_s}{2} \langle B|\bar{u}u + \bar{s}s|B \rangle , \)

\(\sigma_{KB}^d = \frac{\hat{m} + m_s}{2} \langle B|\bar{d}d + \bar{s}s|B \rangle . \)

The \(\eta \)-nucleon sigma term \((\sigma_{\eta B}) \) can be expressed as

\[\sigma_{\eta B} = \frac{1}{3} \langle B|\hat{m}(\bar{u}u + \bar{d}d) + 2m_s\bar{s}s|B \rangle . \]

The \(\sigma_{KB} \) and \(\sigma_{\eta B} \) can be expressed in terms of the \(\sigma_{\pi B} \) and \(y_B \),

\[\sigma_{KB} = \frac{\hat{m} + m_s}{2\hat{m}} (1 + 2y_B) \sigma_{\pi B} , \]

\[\sigma_{\eta B} = \frac{1}{3} \hat{\sigma} + \frac{2(m_s + \hat{m})}{3\hat{m}} y_B \sigma_{\pi B} , \]

where we have defined \(\hat{\sigma} = \hat{m}\langle B|\bar{u}u + \bar{d}d - 2\bar{s}s|B \rangle \), and \(y_B = \frac{\langle B|\bar{s}s|B \rangle}{\langle B|\bar{u}u + \bar{d}d|B \rangle} \).

In terms of \(\hat{\sigma} \) and \(y_B \) we can also define \(\sigma_{\pi B} \) as

\[\sigma_{\pi B} = \frac{\hat{\sigma}}{1 - 2y_N} . \]
Another important parameter pertaining to the strangeness content in a baryon is the strangeness sigma term

$$\sigma_s^B = m_s \langle B | \bar{s}s | B \rangle = \frac{1}{2} y_B \frac{m_s}{\hat{m}} \sigma_{\pi B}.$$

The σ terms can be calculated by using the respective antiquark flavor distribution functions and the most widely accepted range for the light quark mass ratio $\frac{m_s}{\hat{m}}$ as $22 - 30$ MeV.

The σ terms are positive for the case of N and Σ however they are negative for the case of Ξ which is due to the dominance of the s quarks in the valence structure of Ξ. Higher value of y_B is obtained leading to negative value of $\sigma_{\pi B}$.
<table>
<thead>
<tr>
<th>Quantity</th>
<th>N</th>
<th>Σ</th>
<th>Ξ</th>
<th>Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_B</td>
<td>0.044</td>
<td>0.396</td>
<td>1.294</td>
<td>0.396</td>
</tr>
<tr>
<td>$\sigma_{\pi B}$</td>
<td>31.325</td>
<td>137.568</td>
<td>-17.974</td>
<td>137.568</td>
</tr>
<tr>
<td>σ_{KB}</td>
<td>195.952</td>
<td>1417.75</td>
<td>-370.992</td>
<td>1417.75</td>
</tr>
<tr>
<td>$\sigma_{\eta B}$</td>
<td>30.635</td>
<td>845.167</td>
<td>-347.328</td>
<td>845.167</td>
</tr>
<tr>
<td>σ_{B}^s</td>
<td>15.145</td>
<td>599.483</td>
<td>-256.003</td>
<td>599.483</td>
</tr>
</tbody>
</table>
The strangeness fraction of the nucleon can be related to the strangeness content \(f_s^N = \frac{y_N}{1 - y_N} \), which in terms of \(\sigma_{\pi N} \) and \(\hat{\sigma} \) can be expressed as

\[
f_s^N = \frac{\sigma_{\pi N} - \hat{\sigma}}{3(\sigma_{\pi N} - \hat{\sigma})}.
\]

According to NQM, the valence quark structure of the nucleon does not involve strange quarks. The validity of OZI rule in this case would imply \(y_N = f_s^N = 0 \) or \(\hat{\sigma} = \sigma_{\pi N} \). For \(\frac{m_s}{m} = 22 \), the value of \(\sigma_{\pi N} \) comes out to be close to 28 MeV. However, the most recent analysis of experimental data gives higher values of \(\sigma_{\pi N} \) which points towards a significant strangeness content in the nucleon.

The \(\chi \)CQM results giving a comparatively higher value of \(\sigma_{\pi N} \) justify the mechanism of chiral symmetry breaking and SU(3) symmetry breaking. Since no data is available for the \(KN \) and \(\eta N \) sigma terms as well for all the \(MB \) terms corresponding to \(\Sigma \) and \(\Xi \) baryons, the future DAΦNE experiments for the determination of KN sigma terms as well as information from the hyperon-antihyperon production in heavy ion collisions will provide information of the contribution of the sea quark.
Application Potential of the model

The present calculations suggest few important points

- Decomposition of various measurable quantities into the contributions from valence and sea components.
- Contribution of strange quarks in the nucleon which do not appear explicitly in most quark model descriptions of the nucleon and the role played by non-valence flavors in understanding the nucleon internal structure.
Long term

Understanding the spin and flavor structure of the proton will help to resolve the most challenging problems facing subatomic physics which include:

- What happens to the spin in the transition between current and constituent quarks in the low energy QCD?
- How can we distinguish between the current quarks and the constituent quarks?
- How is the spin of the proton built out from the intrinsic spin and orbital angular momentum of its quark and gluonic constituents?
- What is the role played by non-valence flavors in understanding the nucleon internal structure?
Conclusions

- A small but non-zero value of SU(3) symmetry breaking within the dynamics of χCQM, suggests an important role for non-valence quark masses in the nonperturbative regime of QCD.

- Chiral symmetry breaking is the key to understand the contribution of the sea quarks in the nonperturbative regime of QCD.

- At leading order, the model envisages constituent quarks, the Goldstone bosons (π, K, η mesons) as appropriate degrees of freedom.
Thank You