Measurements of baryon form factor at BESII **Bingxin Zhang On behalf of BESIII collaboration**

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

MENU2016@Kyoto University

Outline Hese Section

- **BEPCII & BESIII experiment**
- e⁺e⁻→pp̄ analysis
- $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ analysis
- Prospects & Summary

Double Storage Rings of BEPCII

Beam energy: Optimum energy: Crossing Angle: 1.0 - 2.3 GeV 1.89 GeV ±11 mrad Beam current: Designed Lumi: Achieved time: 0.91 A 1×10³³ cm⁻²s⁻¹ 5th April, 2016

2016/7/29

BESIII Detector

Clean environment and high luminosity at BESIII are helpful for indirect probe of new physics

2016/7/29

BESIII data samples BESII

2016/7/29

Measurement of nucleon form factor by studying $e^+e^- \rightarrow p\overline{p}$

2016/7/29

Event selection

1. Two charged tracks from the vertex 2. $|\cos\theta| < 0.93 (0.80)$ 3. PID (tof & dE/dx) 4. $\theta_{pp} < 178^{0}(179^{0})$ 5. $|p_{mea} - p_{exp}| < 5\sigma_{p}$

2016/7/29

Background analysis **BES**II

1.
b^{-1})
CL)

E_{cm} (GeV)	N_{pro}^{data}	N_{sur}^{data}
2.40	9412203	0
3.40	13191714	0

Separa	ated
beam	data

Background events are almost negligible

		• — ·		(
Bkg	N_{gen}^{MC}	N_{sur}^{MC}	$\sigma(nb)$	$N_{uplimit}^{data}(90\% \text{ C})$
e^+e^-	9.6×10^{6}	0	1434.01	< 0.96
$\mu^+\mu^-$	$7.0{ imes}10^5$	0	17.41	< 0.16
$\gamma\gamma$	1.9×10^6	0	70.44	< 0.24
$\pi^+\pi^-$	1.0×10^5	0	0.173	< 0.01
K^+K^-	1.0×10^5	0	0.138	< 0.008
$p\bar{p}\pi^0$	1.0×10^5	0	< 0.1	< 0.006
$p\bar{p}\pi^0\pi^0$	1.0×10^5	0	< 0.1	< 0.006
$\Lambda \bar{\Lambda}$	1.0×10^5	0	0.4	< 0.02

 $E_{\rm em} = 2.2324$

	E_{cm}	= 3.	65	$(\pounds{=}48.823~{\rm pb^{-1}})$
Bkg	N_{gen}^{MC}	N_{sur}^{MC}	$\sigma(nb)$	N_{mix}^{data} (90% CL)
e^+e^-	$4.44{ imes}10^7$	1	537.46	< 2.58
$\mu^+\mu^-$	$1.5{ imes}10^6$	0	6.50	< 0.52
$\gamma\gamma$	5.5×10^{6}	0	26.33	< 0.57
$\pi^+\pi^-$	1.0×10^5	0	0.044	< 0.01
K^+K^-	1.0×10^5	0	0.0400	< 0.01
$p\bar{p}\pi^0$	$1.0 imes 10^5$	0	< 0.1	< 0.1
$p\bar{p}\pi^{0}\pi^{0}$	1.0×10^5	0	< 0.1	< 0.1
$\Lambda^0 \bar{\Lambda^0}$	$1.0 imes 10^5$	0	0.002	< 0.002
$\tau \tau$	1.0×10^{6}	0	2.0	< 0.1

2016/7/29

2016/7/29

Result of analysis

\sqrt{s} (MeV)	$N_{\rm obs}$	Nbkg	ε' (%)	$L \text{ (pb}^{-1})$	σ_{Born} (pb)	G (×10 ⁻²)
2232.4	614 ± 25	1	66.00	2.63	$353.0 \pm 14.3 \pm 15.5$	$16.10 \pm 0.32 \pm 0.35$
2400.0	297 ± 17	1	65.79	3.42	$132.7 \pm 7.7 \pm 8.1$	$10.07 \pm 0.29 \pm 0.31$
2800.0	53 ± 7	1	65.08	3.75	$21.3 \pm 3.0 \pm 2.8$	$4.45 \pm 0.31 \pm 0.29$
3050.0	91 ± 10	2	59.11	14.90	$10.1 \pm 1.1 \pm 0.6$	$3.29 \pm 0.17 \pm 0.09$
3060.0	78 ± 9	2	59.21	15.06	$8.5\pm1.0\pm0.6$	$3.03 \pm 0.17 \pm 0.10$
3080.0	162 ± 13	1	58.97	30.73	$8.9\pm0.7\pm0.5$	$3.11 \pm 0.12 \pm 0.08$
3400.0	2 ± 1	0	63.34	1.73	$1.8\pm1.3\pm0.4$	$1.54 \pm 0.55 \pm 0.18$
3500.0	5 ± 2	0	63.70	3.61	$2.2\pm1.0\pm0.6$	$1.73 \pm 0.39 \pm 0.22$
3550.7	24 ± 5	1	62.23	18.15	$2.0\pm0.4\pm0.6$	$1.67 \pm 0.17 \pm 0.23$
3600.2	14 ± 4	1	62.24	9.55	$2.2\pm0.6\pm0.9$	$1.78 \pm 0.25 \pm 0.35$
3650.0	36 ± 6	4	61.20	48.82	$1.1\pm0.2\pm0.1$	$1.26 \pm 0.11 \pm 0.07$
3671.0	6 ± 2	0	51.17	4.59	$2.2\pm0.9\pm0.8$	$1.84 \pm 0.37 \pm 0.33$

2016/7/29

Comparison

|G_E| and |G_M| extracted individually
Precision between 11% and 28%
Consistent with previous one at same q-range

 M_{pp} (GeV/c²) study of baryon form factor at BESIII

ISR-Tagged Analysis for Proton

ISR method

- Kinematic constraints applied
- Background evaluation

2016/7/29

study of baryon form factor at BESIII

イロト イボト イヨト イヨト

200

Results from ISR-Tagged Analysis

- th. 3.0 GeV
- Systematic uncertainty included

LA: Large polar Angle of ISR photon SA: Small polar Angle of ISR photon

2016/7/29

Cross section measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ with BESIII data at 2.2324, 2.40, 2.80 and 3.08 GeV

2016/7/29

2016/7/29

Event selection $\overline{\Lambda} \rightarrow \overline{n} \pi^0 \pmod{II}$

- 1. $v_{xy} < 1.0$ cm $|v_z| < 10$ cm
- 2. |cos**θ**|<0.93
- 3. Q=0, N_{track}=2
- 4. $0.08 < P_{\pi} < 0.11 \text{ GeV/c}$
- 5. PID (tof & dE/dx)
- 1. Emc>25MeV (Barrel) & Emc>50MeV (Endcap)
- 2. *θ*_{ych}>10, 3<N_{shower}<20
- 3. Multiple Variable Analysis select n from background
- select π⁰ requirement: 0<T<14 (50ns) ;
- 5. $|E_{\gamma 1}-E_{\gamma 2}|/P_{\pi 0}<0.95; \chi^{2}_{1C}<20$
- $6. \quad \theta_{\pi^0 \overline{n}} > 140^\circ$

2016/7/29

Systematic uncertainty BESII

Ecm=2.2324GeV

Table 7: Summary of the uncertainties.

Systematic source Uncertainty \bar{n} selection 2.2% π^0 selection 2.1% 0.9% χ^2_{1C} cut MVA classifier cut 4.8% Fitting range 3.9% Background shape 4.6% MC generator 3.2% Energy spread 2.0% Energy scale 3.9% Trigger efficiency 1.0% Luminosity 1.0% 12% sum

Ecm=2.40 2.80 3.08 GeV

Source	2.40 GeV	2.80 GeV	3.08 GeV
Reconstruction of Λ	3.8	3.8	3.8
Reconstruction of $\overline{\Lambda}$	3.4	3.4	3.4
Mass window cut of Λ	2.5	2.5	2.5
Mass window cut of $\overline{\Lambda}$	3.0	3.0	3.0
Angular distribution	12.7	10.8	11.4
Input lineshape	2.2	4.0	2.9
Luminosity	1.0	1.0	1.0
Total	14	13	13

Results & comparison BESII

101(-2)

ys Gev	Reconstruction	σ_{Born} (pb)	G (X10 -)
2.2324	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$	$325 \pm 53 \pm 46$	
	$\overline{\Lambda} \rightarrow \bar{n} \pi^0$	$(3.0\pm 1.0\pm 0.4)\times 10^2$	
	combined	316 ± 61	63.0 ± 6.1
2.40		$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$
2.80		$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$
3.08		$3.9\pm1.1\pm0.5$	$2.21 \pm 0.31 \pm 0.14$

(-l-

 Preliminary results for Λ
Non-zero behavior at threshold
Precision improved by 10%

(a)

2016/7/29

study of baryon form factor at BESIII

(b)

Prospects of the Baryon FFs at BESIII

- Proton FFs:
 - Energy scan between 2.0 3.08 GeV.
 - High precision $|G_M|$ and $|G_E|$ (R_{em}) extraction individually.
 - More data at high energy resonances for both ISR tagged and untagged analysis.
- Neutron FFs:
 - Extract $|G_M|$ and $|G_E|$ (R_{em}) first time from energy scan.
 - ISR-tagged analysis for neutron effective FF from threshold.
- Hyperon FFs:
 - Full determination of Λ FFs and polarization.
 - Other hyperon channels including Σ^0 , Σ^{\pm} and Ω .
 - Charmed hyperon Λ_c at threshold.

Summary & outlook

BESIII is an excellent laboratory for the measurement of Form factor since both ISR and scan method can be performed

- ▲ 《Measurement of the proton form factor by studying e⁺e⁻→pp〉 this paper has been published on Phys. Rev. D91, 112004 (2015)
- Many measurements of baryon form factors by the ISR technique or scan method will be performed in the near future

Thanks for your attention !

ありがとうございます