
Search for beyond standard model 
and  QCD	

Taku Izubuchi 
 (RBC&UKQCD) 

RIKEN BNL
Research Center

The	14th	Interna,onal	Conference	on	Meson-Nucleon	Physics	and		
the	Structure	of	Nucleon	MENU16,			Kyoto,	Japan,	2016-07-27	 1	



Contents/Collaborators	
1.  muon g-2  HVP & DWF simulations  

 RBC/UKQCD, C. Lehner, M. Spraggs, A. Porttelli, .... 
 

2.  muon g-2 HLbL 
   T. Blum, N. Christ, M. Hayakawa,  L. Jin,  C. Jung,  
   C. Lehner, 

3.  Nucleon EDM  
    E. Shintani, T. Blum, A. Soni, 
           (dim 5 operators)  M. Abramczyk , H. Ohki, S. Syritsyn 
 

Part of calculation are done by resources from   
  USQCD (DOE), XSEDE, ANL BG/Q, Edinburgh BG/Q, 
  BNL BG/Q, RIKEN BG/Q and Cluster, HOKUSAI  
  
Support from US DOE, RIKEN, BNL, and JSPS 

2	[	RBRC,	QCDCQ,	2011-]	



3	

  

The RBC & UKQCD collaborations

BNL and RBRC

Mattia Bruno
Tomomi Ishikawa
Taku Izubuchi
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Taichi Kawanai
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni
Sergey Syritsyn

CERN

Marina Marinkovic

Columbia University

Ziyuan Bai
Norman Christ
Luchang Jin
Christopher Kelly
Bob Mawhinney

University of Connecticut

Tom Blum

Edinburgh University

Peter Boyle
Guido Cossu
Luigi Del Debbio
Richard Kenway
Julia Kettle
Ava Khamseh
Brian Pendleton
Antonin Portelli 
Oliver Witzel
Azusa Yamaguchi

Plymouth University

Nicolas Garron

University of Southampton

Jonathan Flynn
Vera Guelpers
James Harrison
Andreas Juettner
Andrew Lawson
Edwin Lizarazo
Chris Sachrajda
Francesco San6lippo
Matthew Spraggs
Tobias Tsang

York University (Toronto)

Renwick Hudspith

Greg McGlynn
David Murphy
Jiqun Tu

KEK

Julien Frison

Peking University

Xu Feng



n  Fermion’s energy in the external magnetic field: 
 
 

n  Magnetic moment and spin gl : Lande g-factor 
   gl’s deviation from tree level value, 2 : 
 
 
 
n    

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e s⃗l

2ml
(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)
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N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
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Form factor :

After quantum correction ⇒

2 N. YAMADA

V (x) = −µ⃗l · B⃗(9)

µ⃗l = gl
e

2ml
S⃗l(10)

al =
gl − 2

2
(11)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(12)

F1(q
2) = 1, F2(q

2) = 0(13)

F1(0) = 1, F2(0) = al(14)

al = F2(0)(15)

Anomalous magnetic moment	

B	S	

4	

Formulation

! Magnetic property of lepton can be studied through examining its scattering
by a static magnetic field.
The amplitude can be represented as:

eū(p′′)

[
γµ F1(q

2) +
i

2m
σµν qν F2(q

2)

]
u(p′)Ae

µ(q⃗)

p′p′′

q

! The anomalous magnetic moment is the static limit of the magnetic form
factor F2(q

2):

aℓ = F2(0) = Z2M, M = lim
q2→0

Tr(Pν(p, q)Γ
ν)

where Γν is the proper vertex function with the external lepton on the mass
shell, and Pν(p, q) is the magnetic projection operator.
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The Muon g-2 experiments 
BNL E821 (-2004)	

n  measure precession of muon spin very accurately	

The role of σhadronic ...

Decay spectrum: electrons of energy > E yields very precise ωa

N(t) = N0(E) exp

(
−t

γτµ

)

[1 + A(E) sin(ωat + φ(E))] ,
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F. Jegerlehner ETC* Trento, Italy, April 10-12, 2013, Italy – April 10-12, 2013 –

23

The role of σhadronic ...

BNL muon storage ring: r= 7.112 meters, aperture of the beam pipe 90 mm, field 1.45 Tesla, momentum of the muon
pµ = 3.094 GeV/c (see http://www.g-2.bnl.gov/)

F. Jegerlehner ETC* Trento, Italy, April 10-12, 2013, Italy – April 10-12, 2013 –

19

muon storage ring and the measured positron energy provides the direction of the
muon spin.

The number of decay positrons with energy greater than E emitted at time t after
muons are injected into the storage ring is

N(t) = N0(E) exp
⇤
�t/�⇥µ

⌅ �
1 + A(E) sin(⌅a t + ⇤(E))

⇥
,

� N0(E) is a normalization factor, � ⇥µ the muon life time, � A(E) is the asymmetry
factor for positrons of energy greater than E.

� exponential decay modulated by the g � 2 angular frequency

� angular frequency ⌅a neatly determined from the time distribution of the decay
positrons observed with the electromagnetic calorimeters

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 43

[	BNL	web	page,			g-2		collabora,on	]		

Muon g−2: experiment

! The anomalous magnetic moment of muon has also been studied
extensively in both experiment and theory.

! Experiments using muon storage ring started at CERN in 1960’s. The latest
experiment was conducted at BNL in E821 experiment.

 100  150  200  250  300  350  400
(aµ - 11659000) x 10-10

Theory
Experiment

BNL average
BNL 2001 µ-BNL 2000 µ+BNL 1999 µ+BNL 1998 µ+

BNL 1997 µ+
CERN average

CERN µ-
CERN µ+

! Latest world average of the measured aµ:

aµ[exp] = 116 592 089 (63)× 10−11 [0.54ppm]
Bennett, et al., Phys. Rev. D73, 072003 (2006)

Roberts, Chinese Phys. C 34, 741 (2010)

21/55
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QED calculations	

n  Fine structure constant α 
Experimental input :  anomalous magnetic moment of Electron 
      ae = 0.001 159 652 180 73(28)  [0.24 ppb]  
     [ Hanneke, Fogwell Hoogerheide, Gabrielse, PRA83, 052122 (2011) ] 
 
Theory input:  10th order QED calculation (+ small had+EW ) 
       [ Aoyama, Hayakawa, Kinoshita, Nio Phys. Rev. D 91, 033006 (2015) ] 
      α-1 = 137.035 999 1570 (334)  [0.25 ppb] 

n  1+7+72+891+12,672 
more than 13,000  diagrams ! 

QED contribution: 2nd order term

! 2nd order term comes from 1 Feynman diagram:

A
(2)
1 =

1

2
Schwinger, PR73, 416 (1948)

! With this result, the electron g−2 up to 2nd order becomes:

a
(2)
e = 0.001 161 . . .

which well explained the observed value in the study of Zeeman splitting of
gallium atom by Kusch and Foley in 1947,

ae(KF47) = 0.001 19 (5)
Kusch and Foley, PR72, 1256 (1947); PR74, 250 (1948)

6/55

QED contribution: 4th order term

! 4th order term comes from 7 Feynman diagrams:

Their contributions are known analytically:

A
(4)
1 =

197

144
+

(
1

2
− 3 ln 2

)
ζ(2) +

3

4
ζ(3)

= −0.328 478 965 579 . . .
Petermann, Helv.Phys.Acta 30, 407 (1957)

Sommerfield, PR107, 328 (1957)

! 1 diagram with muon or tau-lepton loop also contributes to mass-dependent
A2 terms. Their numerical values are:

A
(4)
2 (me/mµ) = 5.197 386 67 (26)× 10−7

A
(4)
2 (me/mτ ) = 1.837 98 (34)× 10−9

Elend, PL20, 682 (1966)

Samuel and Li, PRD44, 3935 (1991); 46, 4782(E) (1993); Li, Mendel, and Samuel, PRD47, 1723 (1993)

Passera, J.Phys.G31, R75 (2005)

where the values of the mass ratios used are:
me/mµ = 4.836 331 66 (12)× 10−3, me/mτ = 2.875 92 (26)× 10−4.

Mohr, Taylor Newell, Rev.Mod.Phys.84, 1527 (2012) [CODATA2010]

7/55

QED contribution: 6th order term

! 6th order term receives contributions from 72 Feynman diagrams,
represented by these five types:

Their contributions are analytically known, after almost 30 years of works
that completed in late 1990’s. The numerical values are:

A
(6)
1 = 1.181 241 456 . . .

A
(6)
2 (me/mµ) = −0.000 007 373 941 62 (27)

A
(6)
2 (me/mτ ) = −0.000 000 065 830 (11)

A
(6)
3 (me/mµ,me/mτ ) = 0.000 000 000 000 190 9 (1)

Magnaco and Remiddi, Nuovo Cim.A60, 519 (1969)

Barbieri, Remiddi, PLB49, 468 (1974); Barbieri, Caffo, and Remiddi, PLB57, 460 (1975)

Levine, Remiddi, and Roskies, PRD20, 2068 (1979); Laporta and Remiddi, PLB265, 182 (1991); 390, 390 (1995)

Laporta, PRD47, 4793 (1993); PLB343, 421 (1995)

Laporta and Remiddi, PLB379, 283 (1996)

Laporta, Nuovo Cim.A106, 675 (1993); Laporta and Remiddi, PLB301, 440 (1993)

8/55

QED contribution: 8th order term

! There are 891 Feynman diagrams contributing to 8th order term. They are
classified into 13 gauge-invariant groups.

I(a) I(b) I(c) I(d) II(a) II(c)II(b)

III IV(a) IV(b) IV(c) IV(d) V

! They are mostly evaluated by numerical means. The latest result of the

mass-independent term A
(8)
1 is

A
(8)
1 = −1.912 98 (84)

Caffo, Turrini, Remiddi, PRD30, 483 (1984)

Remiddi, Sorella, Lett.Nuovo Cim.44, 231 (1985)

Kinoshita and Lindquist, PRD27, 867 (1983); PRD27, 877 (1987);

PRD27, 886 (1983); PRD39, 2407 (1989); PRD42, 636 (1990)

Kinoshita and Nio, PRL90, 021803 (2003)

Kinoshita and Nio, PRD73, 013003 (2006)

TA, Hayakawa, Kinoshita, Nio, PRL99, 110406 (2007); PRD77, 053012 (2008)

TA, Hayakawa, Kinoshita, Nio, PRL109, 111807 (2012)

TA, Hayakawa, Kinoshita, Nio, PRD91, 033006 (2015)

10/55

QED contribution: 10th order term

! 12 672 Feynman diagrams contribute to 10th order term.
They are classified into 32 gauge invariant sets within 6 supersets.

12/55
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Diagrams: 389 independent integrals for 10th-order Set V

32/55
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SM Theory 	

n  QED, hadronic, EW contributions 
	

+ ...+=

✕ ✕ ✕

+ + + ...
✕ ✕

+ + + ...

✕ ✕

QED			(5-loop)	
Aoyama	et	al.	
PRL109,111808	(2012)		
	
	
Hadronic	vacuum	
polariza,on	(HVP)	
	
	
	
Hadronic	light-by-light	
(Hlbl)	
	
	
Electroweak	(EW)	
Knecht	et	al	02	
Czarnecki	et	al.	02	

+	 +	…	

+	 +	 +	…	

muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.

�

�

µ µ

�

� �

µ µhad

�

W W

⇤

µ µ

Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.

P
o
S
(
L
A
T
2
0
0
5
)
3
5
3

353 / 3

aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ ! �µ(q) =

✓

�µ
F1(q

2) +
i �µ⌫

q⌫

2m
F2(q

2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e

2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵
2⇡ = 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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(g-2)μ　　SM Theory prediction	

n  QED, EW, Hadronic contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n  Discrepancy between EXP and SM is larger than EW! 
n  Currently the dominant uncertainty comes from HVP, followed by HLbL 

n  x4 or more accurate experiment  FNAL , J-PARC 
n  Goal :  sub 1% accuracy for HVP, and  

           →  10% accuracy for HLbL 

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K.	Hagiwara	et	al.	,	J.	Phys.	G:	Nucl.	Part.	Phys.	38	(2011)	085003	

9	



(g-2)μ　theory vs  experiment	

n  ~ 3.6 σ discrepancy ? 
n  SM prediction 
n  New Physics  
n  → Hadronic uncertainties ?	

170 180 190 200 210
aµ × 1010 – 11659000

HMNT (06)

JN (09)

Davier et al, τ (10)

Davier et al, e+e– (10)

JS (11)

HLMNT (10)

HLMNT (11)

experiment

BNL

BNL (new from shift in λ)

[K. Hagiwara et al., J. Phys. G 38, 085003 (2011)]

aexp
µ − aSM

µ = (26.1 ± 8.0) · 10−10 [3.3σ] for aHLxL
µ = (10.5 ± 2.6) · 10−10

(aexp
µ − aSM

µ = (25.0 ± 8.6) · 10−10 [2.9σ] for aHLxL
µ = (11.6 ± 4.0) · 10−10)

BNL	E821		(~	2004)	

NP?	

[FNAL,		New	(g-2)	experiment	(E989),	is	scheduled	to	taking	data	in	2017,	x4		precision	]		10	



(near) Future experiments	

J-PARC g—2 schematic 

Precision for New Discoveries, June 2016 G. Marshall 23 

resonant laser ionization of 
muonium for low emittance µ+  

(~106 µ+/s) 

3 GeV proton beam 
 ( 333 uA)�

surface muon beam  
(28 MeV/c, »108/s)�

muonium production  
(300 K, 25 meV
2.3 keV/c)�

muon storage ring 
(3T, r = 33 cm, 1 ppm local)�

muon reacceleration 
(Soa, RFQ, IH, DAW, DLS) 

(thermal to 300 MeV/c)�

FNAL		E989		(2019-)	
			move	storage	ring	from	BNL	
			x4	more	precise	results,		0.14ppm	
	
J-PARC	E34	
			ultra-cold	muon	beam	
			table	top	storage	ring	 11	



Hadronic Vacuum Polarization (HVP) 
contribution to g-2	

12	



Leading order of hadronic 
contribution (HVP)	

n  Hadronic vacuum polarization (HVP) 
                
 
  quark’s EM current :  

n  Optical Theorem  
 
n  Analycity 
     	

13	

Vμ	 Vν　	

Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤
tot

(e+e� ! X)

�V (s)��V (0) =
k2

⇥

Z 1

4m2
⇡

ds
Im�V (s)

s(s� k2 � i�)

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 68

F.	Jegerlehner’s	lecture	



Leading order of hadronic 
contribution (HVP)	

n  Hadronic vacuum polarization (HVP) 	

×	

Hagiwara,	et	al.	
J.Phys.	G38,085003	
(2011)	

ρ	 ω	

14	



HVP from experimental data	

n  From experimental e+ e- total cross section   
σtotal(e+e-) and dispersion relation 

 

   time like   q2 = s >= 4 mπ
2 

EQUATIONS

N. YAMADA

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(1)

Πµν(q
2) =

∫
d4x

(2π)4
e−iq·x⟨0|T [jµ(x)jν(0)]|0⟩|0⟩(2)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(3)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](4)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(5)

Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

Date: July 10, 2012.
1

✕

aHVP,LO
µ = (694.91± 4.27)⇥ 10�10

aHVP,HO
µ = (�9.84± 0.07)⇥ 10�10

“Trick” applies to higher order hadronic VP contributions

h e h h h
µ

�

h

a) b) c) d)

Kinoshita, Nizic, Okamoto 1985, Krause 1996, ...
as well as to analytic calculations of higher order diagrams like

Ia Ib Ic Id
µ

�1

�2
�3 �1

�2
�1 �2

�1

3–loop: Hoang et al 95, 4–loop: Broadhurst, Kataev, Tarasov 93, Kinoshita et al
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[		~	0.6	%	err	]	
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F. Jegerlehner FCCP2015 summary 
including BES-III 	

Jegerlehner FCCP2015 summary (⌧ $ e+e�):

150 200 250

excl. �
NSK (e+e�)
177.8 ± 6.9

[3.3 �]

NSK+KLOE (e+e�)
173.8 ± 6.6

[3.9 �]

NSK+BaBar (e+e�)
181.7 ± 6.3

[3.1 �]

NSK+BESIII (e+e�)
177.6 ± 6.8

[3.4 �]

ALL (e+e�)
177.8 ± 6.2

[3.5 �]

incl. �
NSK (e+e�+�)
178.1 ± 5.9

[3.6 �]

NSK+KLOE (e+e�+�)
174.1 ± 5.6

[4.1 �]

NSK+BaBar (e+e�+�)
182.0 ± 5.4

[3.3 �]

NSK+BESIII (e+e�+�)
177.9 ± 5.8

[3.7 �]

ALL (e+e�+�)
178.1 ± 5.3

[3.8 �]

experiment
BNL-E821 (world average)
208.9 ± 6.3

aµ⇥1010-11659000best

3.8�

F. Jegerlehner FCCP 2015, Capri, Sept. 10-12, 2015 11
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Lattice QCD method [Blum, 2003]

+
Using lattice QCD and continuum, 1-volume pQED

aµ(HVP) =
⇣
↵

⇡

⌘2
Z 1

0
dq2 f (q2) ⇧̂(q2)

f (q2) is known, ⇧̂(q2) is subtracted HVP, ⇧̂(q2) = ⇧(q2) � ⇧(0),
computed directly on the lattice

⇧µ⌫(q) =

Z
e iqxhjµ(x)j⌫(0)i jµ(x) =

X

i

Q
i

 ̄(x)�µ
 (x)

= ⇧(q2)(qµq⌫ � q2�µ⌫)

14

HVP from Lattice�

n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 

n  Vector current  2pt function 

 

 

n  Low Q2, or long distance, part of �(Q2)  is   relevant for g-2 

  

 

 

 

	�

[	T.	Blum	PRL91	(2003)	052001	]�

-40 -20 0 20 40
t

1e-12

1e-09

1e-06

0.001

1

light point source

strange point source

Pi(i,i)  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K
2
  [GeV

2
]

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

Pi(i,i) in Fourier space vs K2

connected		
contribu8on� disconnected		

contribu8on�

(plan B) Interplays between lattice 
and dispersive approach  g-2�

n  Dispersive approach from R-ratio  R(s) 

�

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

1

2

3

4

Lattice (u,d,s connected, 48cube), X= 2 sin(p/2)

alphaQED (Jergerlehner)

Lattice ( u,d,s connected, 48cube) X=p, Tcut=24

Pihat(Q
2
)

0 2 4 6 8 10

Q
2
 [GeV

2
]

0

0.005

0.01

0.015

0.02

Lattice (u,d,s, connected, 48cube), Tcut=24

alphaQED (Jergerlehner)

Relative Err of Pihat(Q
2
)

also	[	ETMC,	Mainz,	...	]	� 45	
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Current conservation, subtraction, 
and coordinate space representation�

n  Current conservation =>  transverse tensor 

 

 

n  Coordinate space  vector 2 pt Green function C(t) is directly 

related to subtracted �(Q2)   [  Bernecker-Meyer 2011, ... ]� 

 

n  g-2 value is also related to C(t) with know kernel w(t) from QED. 

 

 

 

 

Approaches to the long-distance noise problem:

I HPQCD 2016: only uses lattice data up to 0.5fm–1.5fm,
beyond that multi-exponentials from fit

I RBC in progress: improved stochastic estimator

-40

-20
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 0  5  10  15  20  25  30  35  40  45

a µ
 1

010

T

48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)

0

 0

 20
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 80

 100
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∆
 a
µ
 1

010

T

48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)
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RBC/UKQCD	

Chiral	Ladce	quark	DWF	

physical	point	

Quark	Propagator	Low	Mode	(A2A)	

using	All-Mode	Averaging	(AMA)	

� 0

 20

 40

 60

 80

 100

 16  18  20  22  24  26  28  30

∆
 a
µ
 1

010

tlat/ex

48 Z2 sources/config
Multi-step AMA with 2000-mode LMA (same cost)

18	



-20

-10

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20  25  30  35  40  45

w
t C

(t)
 1

010

t

Jegerlehner R-ratio
Lattice u+d+s (con+disc)

 685

 690

 695

 700

 705

 710

 715

 16  18  20  22  24  26  28  30

a µ
 1

010

tlat/ex

(plan B)   Interplay between  
Lattice and Experiment	

n  Check consistency between Lattice and R-ratio 
n  Short distance from Lattice, Long distance from R-ratio :    

     error <= 1%  at tlat/exp = 2fm   	

2.2	fm		
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disconnected quark loop contribution �

n  [ C. Lehner et al. (RBC/UKQCD 2015,  arXiv:1512.09054,  PRL) ] 

n  Very challenging calculation due to statistical noise  

n  Small contribution,  vanishes in SU(3) limit,  

    Qu+Qd+Qs = 0 

n  Use low mode of quark propagator, treat it exactly  

     ( all-to-all propagator with sparse random source ) 

n  First non-zero signal  Leading isospin breaking correction to the HVP

•    Main obstacle in implementing this method (in general): , 
➡many diagrams have to be computed 
➡including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched) 

• Computation with Nf=2 O(a) improved Wilson configurations, …

(a) (b) (c) (d) (e)

X

(f)

X

(g)

X

(h)

X

(i)

Figure 1: Contributions to the leading isospin breaking e↵ects to the connected part of the HVP.

(a) (b)

Figure 2: Some examples of the disconnected contributions which are part of the leading isospin breaking
e↵ects to the connected part of the HVP, beyond electro-quenched approximation.

X

q=u,d,...

e2q = � e2qe
2

+ 2(mq �m0
q)

X

� 2e2qe
2 � 2e2qe

2

= + (9)

For a start, it would be nice to compute at least electro-quenched contribution, namely setting (see ref. [1]):

rf = 1, and (10)

gs = g

0
s . (11)

In this case, only diagrams in Figure 1 contribute.
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3

O(mu �md)

•    In the phenomenological determination of              , correctly applied IB correction 
resolved the discrepancy between           and     data   [Jegerlehner,Szafron ‘11] 

•    R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections(LIBE) 
➡Applied to the connected pat of the HVP   

•    Main advantage w. respect to simulating QED+QCD: 
➡Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡No extrapolation in 

• Leading isospin breaking correction (electro-quenched approximation):

O(↵em)

ahad,LO
µ

↵em

e+e� ⌧

The Leading Order Hadronic Vacuum Polarization

Quark-connected piece with > 90% of the con-
tribution with by far dominant part from up and
down quark loops (Below focus on light contri-
bution only)

Quark-disconnected piece with ⇡ 1.5% of the
contribution (1/5 suppression already through
charge factors); arXiv:1512.09054, accepted for
PRL

QED and isospin-breaking corrections, esti-
mated at the few-per-cent level
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Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

Low mode separation crucial since light- strange don’t cancel

contributions above m
s

suppressed

(sparse) random sources e↵ective for high modes

⇧(q2) � ⇧(0) =
X

t

✓
cos(qt) � 1

q2
+

1

2
t2

◆
C (t)

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 0  5  10  15  20

C
(t)

t

Low-mode contribution
Full contribution

5

-25
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-5

 0
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aD
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C
µ
 1

010

T

LT
LT + FT([11,...,17])

-25

-20

-15

-10

-5

 0

 5

 0  5  10  15  20

aD
IS

C
µ
 1

010

T

LT=20
Partial contribution of lattice data for t ≤ T

FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o� aHVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of
T with our final result for aHVP (LO) DISC

µ with its statistical
error band.

we report our final result

a

HVP (LO) DISC
µ = �9.6(3.3)(2.3) ⇥ 10�10

, (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest

-8
-7
-6
-5
-4
-3
-2
-1
 0

 0  5  10  15  20  25  30  35  40  45

aD
IS

C
µ
 1

010
 (C

hP
T)

T

LT for 323 x 64 lattice
LT for 483 x 96 lattice

LT for 643 x 128 lattice
LT for 963 x 192 lattice

FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of a

HVP
µ at percent or sub-percent pre-

cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.
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�(9.6 ± 3.3) ⇥ 10�10 or about 1.5% of total at 3 � level
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HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal
RBC/UKQCD arXiv:1512.09054, accepted by PRL

Statistics is clearly the bottleneck

New stochastic estimator allowed us to get result

aHVP (LO) DISC
µ = �9.6(3.3)stat(2.3)sys ⇥ 10�10 (13)

from 20 configurations at physical pion mass and 45
propagators/configuration.

26 / 35
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HVP Summary and future prospects	

 
•  HVP on Lattice is rapidly progress 
•  Statistic error is well control  

  (low mode, AMA... ) 
•  Disconnected diagram is managed 

•  Systematic errors 
 
Ø  Finite Volume ( ππ model ? ) 
Ø  EM Isospin, ud mass difference 
Ø  charm 
Ø  discretization error 

•  (Plan-B) 
Interplay between Lattice and R-ratio ? 

21	
Hartmut	Wittig Hadronic	contributions	to	(g–2) 43

Summary	on aµ
hvp

a(s) hvp
µ · 1010

a(c) hvp
µ · 1010

light	(u,d) ≈	90%
strange	(s) 	≈		8%
charm	(c) 	≈		2%

Individual	flavour	contribu6ons:

ahvp
µ · 1010

Hartmut	Wittig Hadronic	contributions	to	(g–2) 43

Summary	on aµ
hvp

a(s) hvp
µ · 1010

a(c) hvp
µ · 1010

light	(u,d) ≈	90%
strange	(s) 	≈		8%
charm	(c) 	≈		2%

Individual	flavour	contribu6ons:

ahvp
µ · 1010

[H.	Wikg,	LAT16]	



Hadronic Light-by-Light (HLbL) 
contributions	

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

22	



Hadronic Light-by-Light	

n  4pt function of EM currents 
n  No direct experimental data available 
n  Dispersive approach 

EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :

✕
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HLbL from Models	
n  Model estimate with non-perturbative constraints at the chiral / 

low energy limits using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty	

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

F.	Jegerlehner		,		x	1011	
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Our Basic strategy :  
Lattice QCD+QED system  

	n  4pt function has too much information to parameterize (?)  
n  Do Monte Carlo integration for QED two-loop with 4 pt function π(4) which  

is sampled in lattice QCD with chiral quark (Domain-Wall fermion) 
n  Photon & lepton part of diagram is derived either in lattice QED+QCD 

[Blum et al 2014] (stat noise from QED), or exactly derive for given loop 
momenta [L. Jin et al 2015] (no noise from QED+lepton).	

l  set	spacial	momentum	for		
			-	external	EM	vertex	q	

			-	in-	and	out-		muon	p,	p’	
								q	=	p-p’	
	
•  set	,me	slice	of	muon		

source(t=0),		sink(t’)	and	operator	(top)	
	
•  take	large	,me	separa,on	for	
ground	state	matrix	element	

✕

(0,	p)	 (t’,	p’)	

(top,	q)	

muon	

3	photons	

25	



n  Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the 
quark loop and the lepton line connected :   
   disconnected problem in Lattice QED+QCD  -> connected problem with analytic 
photon 

n  QED 2-loop in coordinate space. Stochastically sample, two of quark-photon 
vertex location x,y, z and xop is summed over space-time exactly 

 
 
 

n  Short separations, Min[ |x-z|,|y-z|,|x-y| ] < R ~ O(0.5) fm, which has a large 
contribution due to confinement, are summed for all pairs 

n  longer separations, Min[ |x-z|,|y-z|,|x-y| ]  >= R,  are done stochastically with 
a probability shown above  ( Adaptive Monte Carlo sampling ) 

n  All lepton and photon part produce  no noise for given x,y  ( Ls = ∞ DWF muon ) 
     
 
 
 

Coordinate space Point photon method  
[ Luchang Jin et al. , PRD93, 014503 (2016)  ]	

QEDA,QEDB
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Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

xop	

z	
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Systematic effects in QED only study	

n  muon loop, muon line 
n  a = a mµ / (106 MeV) 
n  L= 11.9, 8.9, 5.9 fm 
n  known result :  F2 = 0.371 (diamond) correctly reproduced (good 

check)  
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Figure 4.6: Plots of our results for the connected light-by-light scattering contribution in

QED to F2(0), known to be 0.371⇥ (↵/⇡)3 [9, 10], as a function of a2 expressed in GeV by

assigningmµ = 106 MeV. This is done for three choices of the physical lattice size L = 11.9 fm

(diamonds), 8.9 fm (squares) and 5.9 fm (circles). The curves shown are quadratic functions

of a2 chosen to pass through the three points for each physical volume. The coe�cients for

each of these fits are listed in Table 4.13.
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Figure 4.7: Results for F2(0) from QED-connected light-by-light scattering. These results

have been extrapolated to the a2 ! 0 limit using two methods. The upper points use the

quadratic fit to all three lattice spacings shown in Fig. 4.6, while the lower point uses a linear

fit to the two leftmost points in that figure. Here we extrapolate to infinite volume using

the linear fits shown to the two, leftmost of the three points in each case.
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FV	and	discre,za,on	error	could	be	as	large	as	20-30	%,	
similar	discre,za,on	error	seen	from	QCD+QED	study	 27	
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11	fm,	243x64		(2.7	fm)3,		
mπ	=	329	MeV,			mμ	=~	190	MeV,	e=1	

more	than	x100		reduced	cost	!	
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Table 4.10: Results for F2(q2) from applying the conserved and moment methods to the

the 24IL ensemble with mµa = 0.1 using a muon source-sink separation tsep = 32. As

before,
p
Var = Err

p

NconfNprop. We use the conserved current for the external photon

and local currents for the internal photons for both methods. The conserved results are for

q2 = (2⇡/L)2 while the moment methods gives a q2 = 0 result.

Method F2/(↵/⇡)3 Nconf Nprop

p
Var

Conserved 0.0825(32) 12 (118 + 128)⇥ 2⇥ 7 0.65

Mom. 0.0804(15) 18 (118 + 128)⇥ 2⇥ 3 0.24

q2 = 0. Since these calculations are less computationally costly than those for QCD, we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite-volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [9, 10]. This QED calculation serves

both as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and nonzero-lattice-

spacing errors.

In Fig. 4.6 we show results for F2(0) computed for three di↵erent lattice spacings, i.e.

three di↵erent values of the input muon mass in lattice units, but keeping the linear size of

the system fixed in units of the muon mass. The data shown in Fig. 4.6 are also presented

in Table 4.11. We use two extrapolation methods to obtain the continuum limit. The first,

shown in the figure, uses a quadratic function of a2 to extrapolate to a2 = 0. The second

makes a linear extrapolation to a2 = 0 using only the two leftmost points for each of the

three values of mµL. The coe�cients for the quadratic-in-a2 fits shown in Fig. 4.6 as well as

those for the linear-in-a2 fits are given in tabular form in Tables. 4.12 and 4.13.

tsep	

2.2	fm	

28	
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• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.
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′
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′
z
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′
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Dramatic Improvement ! 
 Luchang Jin	



Mπ=170 MeV cHLbL result 
[ Luchang Jin et al.,PRD93, 014503 (2016) ]	

n  V=(4.6 fm)3, a = 0.14 fm, mµ=130 MeV, 23 conf 
n  pair-point sampling with AMA (1000 eigV, 100CG) , 

 > 6000 meas/conf 
•   |x-y| <= 0.7fm, all pairs, x2-5 samples  
     217 pairs  (10 AMA-exact) 
•  |x-y| > 0.7fm,  512 pairs ( 48 AMA-exact) 

n  13.2 BG/Q Rack-days 

within QED, arising when the internal loop is a muon, working at three values for the

lattice spacing and three volumes. By extrapolating to vanishing lattice spacing and infinite

volume we obtain a result which agrees with the analytic result within 2%, an accuracy

expected from a combination of statistical and extrapolation uncertainties.

The most successful approach uses exact, analytic formulae for the three photon prop-

agators that appear in the HLbL amplitude and the standard methods of lattice QCD. In

contrast with normal perturbative methods, much of the calculation is performed in position

space and stochastic methods are only introduced to sample position-space sums, reducing

the computational cost so that it grows proportional to the space-time volume instead of its

cube. Because of the structure of the amplitude being computed, we can identify a specific

space-time position within the hadronic part of the amplitude and use that location as the

origin to obtain the anomalous magnetic moment from what is essentially a classical spatial

moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ−2 from

a relatively coarse, 323 × 64 ensemble with 1/a = 1.38 GeV, spatial extent L = 4.6 fm and

pion mass mπ = 171 MeV:

(gµ − 2)cHLbL

2
= (0.1054± 0.0054)(α/π)3 = (132.1± 6.8)× 10−11. (47)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ−2 of (105±26)×10−11 and the difference between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)×

10−11. Equation (47) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the non-zero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insufficiently

well understood to be reliably estimated. A particularly important systematic errors comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (47) with

experiment serves only to give a context for the size of the present statistical errors.

In Section III we have presented a series of numerical tests of many of the different

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (47). We hope that some of these may be useful in the future for the efficient

calculation of other quantities that involve a combination of QED and QCD, a relatively
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Figure 8. Histograms and scatter plots for the contribution to F2 from different separations |r| =

|x− y| are shown in the left and right plots respectively, following the conventions used in similar,

previous figures. The upper two plots are obtained using the conserved version of the exact photon

method on the 32ID ensemble. The lower two plots are obtained using the moment method, but

from approximate propagators each obtained from 100 CG iterations, again on the 32ID ensemble.

with the restriction |z − x| ≥ |x − y| and |z − y| ≥ |x − y| that was described previously,

to the 24I ensemble with mµa = 0.1 in order to compare these methods with the original

subtraction calculation [17] which was carried out on the same ensemble with the same

muon mass. We compute the short distance part up to rmax = 4. For |r| ≤ 2 we compute

each independent direction two times while for 2 < |r| ≤ 4 each independent direction is

computed only once for each configuration. We take many discrete symmetries into account

when summing over the short-distance part, including independent inversions of x, y, z, t,

and exchanges of the x and y directions. For the long-distance part, we did not use the M2

method, but instead directly chose the probability distribution for the point pairs (|r| > 4):

P24IL(r) ∝
1

|r|4
e−0.1|r|. (43)

For the conserved method the propagators are computed with approximate inversions

37

r	=	min	{|x-y|,	|y-z|,|z-x|}	

Strange	contribu,on	:	(0.0011±	0.005)	(α/π)3			
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• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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physical Mπ=140 MeV cHLbL result 
[ Luchang Jin et al. , preliminary]	

n  V=(5.5 fm)3, a = 0.11 fm, mµ=106 MeV, 69 conf  [RBC/UKQCD] 
n  Two stage AMA (2,000 eigV, 200CG and 400 CG)  using zMobius,      

~4500 meas/conf 
n  160 BG/Q Rack-days 139MeV Pion 483

× 96 Lattice 32/36
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Figure 21. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. The left plot
is evaluated with z sumed over longer distance region, so the small r region includes most of the
contribution. The right plot is evaluated with z sumed over longer distance region, so the QCD finite
volume is better controlled in the small r region.

• Contribution vanishes long before reaching the boundary of the lattice.

• Suggesting the QCD finite volume effects be small in this case.

• Simply increasing the QED box will fix most of the finite volume effects.

r	=	min	{|x-y|,	|y-z|,|z-x|}	 r	=	max{|x-y|,	|y-z|,|z-x|}	

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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spatial moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ�2 from

a relatively coarse 483 ⇥ 96 ensemble with 1/a = 1.73 GeV, spatial extent L = 5.5 fm and

pion mass m⇡ = 139 MeV:

(gµ � 2)cHLbL

2
= (0.933± 0.0073)(↵/⇡)3 = (116.9± 9.1)⇥ 10�11, (6.1)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ�2 of (105±26)⇥10�11 and the di↵erence between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)⇥
10�11. Equation (6.1) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the nonzero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insu�ciently

well understood to be reliably estimated. A particularly important systematic error comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (6.1) with

experiment serves only to give a context for the size of the present statistical errors.

In Chapter 4 we have presented a series of numerical tests of many of the di↵erent

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (6.1). We hope that some of these may be useful in the future for the e�cient

calculation of other quantities that involve a combination of QED and QCD, a relatively new

area where there are many new directions to explore.

The cHLbL calculation at physical pion mass presented here are performed on current

leadership-class computers. A follow-on calculation with a smaller lattice spacing and a

corresponding 643 ⇥ 128 volume are planed, allowing a continuum limit to be evaluated.

Controlling the e↵ects of finite volume and including the contributions of disconnected dia-

grams are more di�cult, but they are being actively pursued. For now, we may guess the

size of discretization and finite volume e↵ects based on our QED light-by-light calcuation

(preliminary,	connected,	
			stat	err	only)	

integrand	safely	suppressed	before	
reaching			r	~		L/2	0.6	fm	

y	 x	
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Disconnected diagrams in HLbL 
	

n  Disconnected diagrams 
 
 
 
 
 
 

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach
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SU(3) hierarchies for d-HLbL	

n  At ms=mud  limit,  following type of disconnected HLbL 
diagrams survive   Qu + Qd + Qs = 0 

n  Physical point run using similar techniques to c-HLbL. 
 

n  other diagrams  suppressed by 
    O(ms-mud) /3    and    O( (ms-mud)2 ) 

Muon g − 2 Light by Light

by Luchang Jin

xsrc xsnkz
′
,κ

′
y
′
,σ

′ x
′
, ρ

′

xop, ν

z,κ
y,σ x, ρ

Figure 1. Disconnected Light by Light diagrams. There are other possible permutations.

1 Method outline

• Use one configuration to compute 32 point source propagators and perform HVP like con-
traction. Store the average of the results, Πρ,σ

avg(r), and later we would subtract it from other
HVP like contraction computed using other configurations.

Πρ,σ
avg(r) =

1
N

∑

k=1

N

{−Tr[γρSq(xk, xk + r)γσSq(xk + r, xk)]} (1)

• Start with point source x, compute point source quark propagators and photon x→ x′.

• Compute the local current for all possible y, Πρ,σ(x, y) (subtract Πρ,σ
avg(x, y) from this value)

Πρ,σ(x, y) = −Tr[γρSq(x, y)γσSq(y, x)]−Πρ,σ
avg(y −x) (2)

• Optional subtraction: Ideally, the sum of the current over space time should be zero. Since
we use local current, this is not strictly true. But we can introduce Πρ,σ

′ (x, y) where

Πρ,σ
′ (x, y) = Πρ,σ(x, y)− δx,y

∑

y ′

Πρ,σ(x, y ′) (3)

Should try to see if this trick work for connected LbL calculation.

• Use the current computed above as a source and construct photon y→ y ′

• Use the two photons constructed above and compute the muon line with sequential source
finally contract at z ′ with local current. Note that this procedure should be performed for all
possible permutations of the three photons. The muon source and sink separation is usually
taken to be half of the lattice time extent, and the source and sink positions are chosen so
that x is in the middle of them xt = ((xsrc)t +(xsnk)t)/2.

• Use the local current at all possible z ′ construct photon z ′→ z

1
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Figure 5.1: Leading order diagram, survives in SU(3) limit.
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Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.
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diagrams, the signal has to come from a subtle gluon interactions between the two quark

loops, which can only be discovered by gauge averaging. As a result, although the signal

should be exponentially suppresed when |r| = |x � z| become large just as the connected

diagram, the noise remains constant for arbitrary |r|. Since the formula involve summation

over r, one can expect a lot of noises come from the large |r| region, and will become larger

if we increase the volume. However, the independence of these two loops also provide some

benefit. The contraction at y position will not depend on the position of z, thus the M2 trick

can be applied without recomputing the muon part. So, we obtained order M2 combinations

of samples with no additional cost, where M is the number of point source quark propagators
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Figure 5.3: Even higher order diagrams.

x

src

x

snk

z

0
,

0
y

0
,�

0
x

0
, ⇢

0

x

op

, ⌫

z, y,� x, ⇢

x

src

x

snk

y

0
,�

0
x

0
, ⇢

0
z

0
,

0

x

op

, ⌫

z,

y,� x, ⇢

x

src

x

snk

z

0
,

0
y

0
,�

0
x

0
, ⇢

0

x

op

, ⌫

z, y,� x, ⇢

computed for each configuration.

5.2 Infinite volume limit

Normally, the finite volume e↵ects in lattice QCD calculations are exponentially suppressed

by L, the linear size of the lattice volume times m⇡, the energy of lowest energy eigen-state

of QCD. For example, the points x, y, z, which appears in Eq. (3.6), are directly connected

to on the quark loop. The finite volume e↵ects introduced when limiting these points in a

finite size lattice are exponentially suppressed. However, in the light-by-light calculation,

there are also QED finite volume e↵ects. The QED finite volume e↵ects enter only through

Eq. (3.7), which include everything except the quark loop. We repeat the equation below:

G⇢�(x, y, z, xsnk, xsrc) =
X

x0,y0,z0

G⇢⇢0(x, x
0)G��0(y, y0)G0(z, z0)

·
h

Sµ (xsnk, x
0) �⇢0Sµ(x

0, z0)�0Sµ(z
0, y0)��0Sµ (y

0, xsrc)

+Sµ (xsnk, z
0) �0Sµ(z

0, x0)�⇢0Sµ(x
0, y0)��0Sµ (y

0, xsrc)

+four other permutations
i

. (5.1)

The summation variables x0, y0, z0 in above equation can move freely along the muon line,

only connected to the quark loop by massless photons. Thus, Eq. (5.1), when evaluated

(ms-mud)0	

(ms-mud)/3	 (ms-mud)2	
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139 MeV Pion, connected and 
disconnected LbL results (preliminary)	

n  left: connected,  right : leading disconnected 

 
n  Using AMA with 2,000 zMobius low modes, AMA 
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Figure 15. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. Left: connected
diagrams contribution. Right: leading disconnected diagrams contribution.

• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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• We use Lanczos, AMA, and zMobius techniques to speed up the computations.

• 65 configurations are used. They each are separated by 20 MD time units.
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(	Preliminary,		sta,s,cal	error	only	)	
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 g-2  Summary 	
 
n  Lattice calculation for g-2 calculation is improved very rapidly 
n  HLbL  including leading disconnected diagrams :  

 Many orders of magnitudes improvements 
 ->  8 % stat error in connected,  13 % stat error in leading disconnected 
•  coordinate-space integral using analytic photon propagator with adaptive 

probability (point photon method) 
•  config-by-config conserved external current  
•  take moment of relative coordinate to directly take q→0 
•  AMA, zMobius, 2000 low modes 

 
 
 
 
 
n  Still large systematic errors (missing disconnected, FV, discr. error, ... ) 
n  Also direct 4pt method [Mainz group] and Dispersive analysis [ Colangelo 

et al. 2014, 2015, Pauk&Vanderhaeghen 2014 ] 

n  Goal : HVP sub 1%,  HLbL 10% error  
34	
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Nucleon Eclectic dipole Moments　 
[ R. Picker’s talk ] 	

Viola,on	of		C	(charge	conjuga,on	
symmetry)	and	CP	(parity	and	C)		

	 35	



P & CP violation and Electric Dipole 
Moments (EDM)	

n  Electric Dipole Moment  d  
  energy shifts in an electric field  E 

n  A nonzero EDM is a signature of P and T (CP 
through CPT) violation  
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ΔH =

d •

E

T	

P	

unless		there	are	degenerate	ground	states	
transform	to	each	other	by	Parity	c.f.		Water	
molecule		

exp:	ΔH	~	10-6	Hz	~	10-21	eV	
	→			|d|	<	ΔH/E	~	10-25	e	cm	
	
if	theo:	d	~	10-2	x	1	MeV	/	Λ2

CP	
→		ΛCP		>~			O(1)	TeV		



  
•  θ term in the QCD Lagrangian: 
 
 

 
renormalizable and CP-violation comes due to topological charge density. 

 

•  also higher dimension  CP violating operators 
 

•  EDM experiment provides very strong constraint on 
　 ⇒ θ and arg det M need to be unnaturally canceled !  

strong CP problem 
 
 
•  up quark mass less ?  Axion ?  (θ term case only)  ?   

Sources of CP violation	

37	



CP violation on lattice : Reweighting	

n  Source of CP violation   (Θ in our case)   
 
 
 
 
 

n  Topological charge is measured either by gluonic 
observable GG* or by counting zero mode of chiral 
fermions 

    
     Q  →   Σ  G12 G34 ,   Gµν　＝ Im  
   
n  Θ=0 lattice QCD ensemble is generated, then each 

sample of QCD vacuum are reweighted using topological 
charge 
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EDM Computations on Lattice 
	

n  Measure energies with external Electric field 
 
 
 
 
 
 

n  Form factors	
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CP even and odd 2point functions	

Introduction Configuration ensemble and measurement details Preliminary results Summary/Outlook

Mixing coe�cient from odd/even 2pt function

e↵ective nucleon mass mixing coe�cient
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1
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Q

5 10
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0.8

1
N effective mass, m=0.005 N effective mass, m=0.01

FIG. 2: E↵ective mass plot of nucleon propagator C
G

at ✓-LO in Gaussian smeared sink and CQ

G,L

at ✓-NLO in local and Gaussian sink respectively, at m = 0.005 (left) and m = 0.01 (right).

distance of time-separation �t between source-sink operator. In lattice calculation the

appropriate setting of �t is important to keep the balance of uncertainty against the com-

putational cost. As one has seen in Eq.(4), the “true” signal of form factor of the asymptotic

nucleon state is given as the plateau region in Figure 3 after taking the enough large separa-

tion�t, and the excited state contamination will be suppressed as exp(�(E
excite

�E
grand

)�t).

Although increasing �t enable us to reduce the systematic error due to unsuppressed ex-

cited state contamination, there appears relatively large statistical fluctuation because the

signal-to-noise ratio decreases like (noise) ⇠ exp(�E
grand

�t). To identify the signal of form

factor and search the appropriate �t to discriminate the excited state contamination, we

make a comparison of two di↵erent �t, and observe the consistent plateau region. In left

panel of Figure 3 at transfer momentum from q2 = �0.2 to �0.7 GeV2, one observes the

clear plateau between 4  at  8 and also this is in good agreement with plateau in small

�t case between 3  at  5 as shown in right panel (also see Figure 4). The fitting re-

sults obtained by using constant function are represented in Table III and IV, and the high

precise value of form factor is obtained as a few % precision for Gp

e

, Gp

m

and Gn

m

, and also

12
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FIG. 11: The dependence of pion mass squared for ↵
N

obtained by using the di↵erent sink operator

and momenta.

Furthermore it is interesting to see the relation between EDM and anomaly e↵ect, which is

related to topological charge susceptibility �
Q

. According to the discussion of contribution

from anomaly term in chiral Lagrangian [38–42], they represented the consistent formula

with perspective of QCD,

d
N

⇠ 2

f 2

⇡

�2

Q

µ
N

ḡ
⇡NN

2m
N

(27)

with CP-violation coupling ḡ
⇡NN

(f
⇡

= 92.4 MeV). Here we also adopt U(1) anomaly relation

[26] �
Q

= m2

⇡

f 2

⇡

(m2

⌘

0 � m2

⇡

)/(2N
f

m2

⌘

0) into leading ChPT formulation. Figure 12 plots the

relation of EDM with topological susceptibility measured in this configuration, and also

display the predicted bound in baryon ChPT at the physical point, in which we insert

m
⇡

= 0.135 GeV and m
⌘

= 0.957 GeV. One also sees that for neutron EDM there is slight

tension between lattice result and ChPT estimate authough our simulation point is separated

from physical point.

VI. SUMMARY

This paper presents the details of lattice calculation of nucleon electric dipole moment

(EDM) obtained from EDM form factor in matrix element. Here we insert the ✓-term into

26

Fit CP even and odd parts to common mass
find mixing is momentum, mass (?) independent

Tom Blum (UCONN / RBRC), Taku Izubuchi (BNL/RBRC), Eigo Shintani (Mainz)Calculation of the D=4 contribution to the nEDM using lattice QCD
40	

Introduction Configuration ensemble and measurement details Preliminary results Summary/Outlook

The electric dipole moment of the nucleon

In the CP broken vacuum, we have (for example)

trPxy G t(q2) = ip
z

✓
↵mF

1

(q2) + ↵
E + 3m

2
F
2

(q2) +
E +m

2
F
3

(q2)

◆

+ O(✓2)

where the mixing of even and odd FF comes from the nucleon
spinors, which are no longer eigenstates of CP
(Pospelov, Ritz 1998, S. Aoki et al. 2005)

X
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0
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(~p)ū
s,✓

(~p) = E (~p)�
t

� i~� · ~p +me2i↵�5 ,

⇡ E (~p)�
t

� i~� · ~p +m(1 + 2i↵�
5

)

where u
✓

= exp i↵�
5

u.

Need to subtract ↵-terms to get physical edm (F
3

)

Tom Blum (UCONN / RBRC), Taku Izubuchi (BNL/RBRC), Eigo Shintani (Mainz)Calculation of the D=4 contribution to the nEDM using lattice QCD

•  need	to	take	into	account		
CP	even/odd	mixing	for	
Nucleon	spinor,	2pt	func,ons	

•  CP	odd/even	has	a	common		
mass	
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FIG. 15. The relation between the nucleon EDM’s and the topological charge susceptibility given

in (22) for the neutron (circle) and proton (square). Iwasaki, 243 ensembles. The red-bar is from

baryon chiral perturbation theory.
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F3 unsubtracted @ Mpi=300 MeV	Introduction Configuration ensemble and measurement details Preliminary results Summary/Outlook

F3 form factor, unsubtracted (ml = 0.005, m⇡ = 330 MeV)
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FIG. 5: Time slice of two divided pieces of EDM form factor into term F
Q

including three-point

function in ✓-NLO and subtraction term F
↵

including CP-odd phase factor ↵
N

and EM form

factors. From the left to right panels show the results at di↵erent insertion momenta. Upper panel

is result for neutron and bottom is result for proton at m = 0.005. Here we use three-point function

of µ = t EM current shown in Eq.(14).

form factor. In our analysis we set 0.20 GeV2  �q2  0.55 GeV2 and 0.20 GeV2  �q2 
0.71 GeV2, and the mean value and statistical error in Table VII is employed as the later

fitting range. The total error of EDM is estimated by quadrature of systematic and statistical

one. One sees that the size of statistical error is dominant in total error, which is more than

90% for �t = 12, otherwise in the case of �t = 8 statistical error is compatible with

systematic error. It implies that the reduction of statistical error plays an important role

to discriminate the non-linear q2 behavior of EDM form factor. To perform more careful

analysis, we need more accurate calculation, and thus it will take over the future work.

The q2 slope of EDM form factor is also related to the important ingredient for diamag-

netic atom EDM (199Hg, 129Xe, etc) estimate associated with Schi↵ moment operator [28].

The electromagnetic Schi↵ moment S 0 arises from interaction of nucleon and electron on

atomic scale, which is locally formed as S 0@
µ

( ̄�
5

 )@
⌫

F µ⌫ , and this contribution leads to

the leading q2 dependence of EDM form factor after expanding EDM form factor at small

18

5 10

-0.5

0

0.5

1

N
eu

tro
n

FQ
F
α

5 10
at

-0.5

0

0.5

1

Pr
ot

on

5 10

-0.5

0

0.5

1

5 10

-0.5

0

0.5

1

5 10

-0.5

0

0.5

1

5 10
at

-0.5

0

0.5

1

5 10
at

-0.5

0

0.5

1

5 10
at

-0.5

0

0.5

1

np
2 = 1 np

2 = 2 np
2 = 3 np

2 = 4

FIG. 5: Time slice of two divided pieces of EDM form factor into term F
Q

including three-point
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factors. From the left to right panels show the results at di↵erent insertion momenta. Upper panel

is result for neutron and bottom is result for proton at m = 0.005. Here we use three-point function

of µ = t EM current shown in Eq.(14).

form factor. In our analysis we set 0.20 GeV2  �q2  0.55 GeV2 and 0.20 GeV2  �q2 
0.71 GeV2, and the mean value and statistical error in Table VII is employed as the later

fitting range. The total error of EDM is estimated by quadrature of systematic and statistical

one. One sees that the size of statistical error is dominant in total error, which is more than

90% for �t = 12, otherwise in the case of �t = 8 statistical error is compatible with

systematic error. It implies that the reduction of statistical error plays an important role

to discriminate the non-linear q2 behavior of EDM form factor. To perform more careful

analysis, we need more accurate calculation, and thus it will take over the future work.

The q2 slope of EDM form factor is also related to the important ingredient for diamag-

netic atom EDM (199Hg, 129Xe, etc) estimate associated with Schi↵ moment operator [28].

The electromagnetic Schi↵ moment S 0 arises from interaction of nucleon and electron on

atomic scale, which is locally formed as S 0@
µ
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F µ⌫ , and this contribution leads to

the leading q2 dependence of EDM form factor after expanding EDM form factor at small
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Tom Blum (UCONN / RBRC), Taku Izubuchi (BNL/RBRC), Eigo Shintani (Mainz)Calculation of the D=4 contribution to the nEDM using lattice QCD
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F3	=	FQ	+	Fα	
FQ	:	CP-odd	3pt	func,on	contribu,on	
Fα	:		α　x		CP-even	3pt	func,on	(F1	and	F2)	



Nucleon EDMs from Lattice  
θ case,  summary  

	

42	

New	:	DWF	(3	ensemble),	imaginary	Θ	(2	ensemble),	ETMC	(1	ensemble)	+	quenched		
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FIG. 14. EDM summary plot for the neutron (top) and proton (bottom) for 2 and 3 flavor QCD.

Triangles denote results of the current study and include statistical and systematic errors, as

described in the text. Results for other methods are also shown: external electric field (�E) [39],

and imaginary ✓ (F
3

(i✓))[37, 38]. Previous results show statistical errors only. The cross denotes

a range of values from model calculations based on the baryon chiral perturbation theory NEED

cite[].
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In	θ	case,	dN	~	mq,		
quark	mass	dependence	is	important	



 Summary 	

n  g-2  HVP : goal sub 1% 
n  g-2 HLbL : goal 10% 

  

n  Nucleon EDM for proton & Neutron 
•  Results for Θterm with large noise or heavy quark mass 
•  Higher dim CP violating operators are also being computed  
•  Very challenging 

 

n  Rapid progress, some of calculations still needs  
new ideas and techniques are still needed to 
reduce error further to reach goal. 
 
Important moments for Lattice QCD 
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g-2 Future plans	

n  (discretization error) Nf=2+1 DWF/ Mobius ensemble at 
physical point, L=5.5 fm, a=0.083 fm, (64)3 at Mira, 
ALCC @Argonne  started to run 

n   (FV study)   QCD box in QED box at physical point 
n  Disconnected diagrams 
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Backup slides / for discussion	
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Sub-percent accuracy on Physical point 
	n  now  on-physical point (Mπ=135 MeV),  

a few lattice spacing  a-1 = 1.7 and 2.4 GeV,  V~(5.5 fm)3   
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Physics measurements ‘‘Detectors’’

• Measurements physical observables on the vacuum ensemble.

⌥O� =

�
DUµ Prob[Uµ] ⇥ O[Uµ]

• Could do Analysis on many configurations independently (trivial parallel jobs) �⌅
could also use PC Clusters

• We made hadron operator (EW operators) from quark, and let the quark propagates on
each of the generated QCD configuration (by solving the Dirac Eq)

• Obtain hadron mass or QCD matrix elements of operators

u

d

µ�

⇤̄µ

W

⟨0|d̄�5u(0)|⌅⟩ eipx⇥
2E
⟨⌅|ū�mu�5d|0⟩ ×GFVudmµ⇤̄(1− �5)µ

M(⌅ ⇤ µ⇤) ⇥ if⇥qµ�GFVudmµ(⇤µ)L

= ⇧⌅(q)|ū�µ�5d(0)|0⌃�GFVudmµ(⇤µ)L

Taku Izubuchi, QCD Structure, Wuhan, October 9, 2012 6

π	+	→			μ+			+	ν	μ		



Sub-percent accuracy on Physical point 
	n  now adding on-physical point (Mπ=135 MeV),  

2 lattice spacing  a-1 = 1.7 and 2.4 GeV,  V~(5.5 fm)3  ! 
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6

Simplest Matrix Elements:  fπ and fK

s̄

K+

u

Kl2
leptons

( %)

( . )e

63

1 6 10e
5

#

n o

o

n
+

+ -

f
:

70 80 90 100 110 120 130 140 150

2000 quench 137.0(11.0)

2007 127.0( 4.0)

2008 124.1( 7.8)

2010 124.0( 5.4)

2014 130.2( 0.9)

2013 FLAG 130.2( 1.4)

RBC/UKQCD f
:

fK
100 110 120 130 140 150 160 170

2000 quench 156.0( 8.0)

2007 157.0( 5.0)

2008 149.6( 7.3)

2010 149.0( 4.5)

2014 155.5( 0.8)

2013 FLAG 156.3( 0.9)

RBC/UKQCD fK

• Inputs are mπ, mK and m�

• Use SU(2) ChPT to extrapolate

• Now have ensembles with essentially 
physical quark masses (few percent) 
arXiv:1411.7017 (RBC-UKQCD)

• fπ and fK are predictions

[	R.	Mawhinney	]		



Direct 4pt calculation for selected 
kinematical range	

[ J. Green et al. Mainz group, Phys. Rev. Lek 115, 222003( 2015)]  
n  Compute connected contribution of 4 pt function in momentum space 
n  Forward amplitudes related to γ*(Q1)γ*(Q2) -> hadron cross section via 

dispersion relation 

 
 
 
 
 
n  solid curve: model prediction 
n  π0 exchange is seen to be not dominant, 

 possibly due to heavy quark mass  
in the simulation (Mπ = 324 MeV)  

n  disconnected quark diagram loop 
    in progress in 2016 

3
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FIG. 3. The forward scattering amplitude M
TT

at a fixed
virtuality Q2

1

= 0.377GeV2, as a function of the other photon
virtuality Q2

2

, for di↵erent values of ⌫. The curves represent
the predictions based on Eq. (10), see the text for details.

for some fixed functions f

1,2

and all values of {µ
a

}
and X

4

. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ

is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X

3

. Then,
it is combined with the function f

1

or f

2

to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f

1

and f

2

.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f

1

and f

2

, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, f

a

(X) = e

�iPa·X and
compute the Fourier modes with respect to X

4

. Thus,
⇧E

µ1µ2µ3µ4
(P

4

;P
1

, P

2

) can be evaluated e�ciently at fixed
P

1,2

for all P
4

available on the lattice.

FIG. 4. The dependence of the amplitude M
TT

on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m

⇡

= 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J

l

µ

is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, M

TT

(�Q

2

1

,�Q

2

2

, ⌫)�M
TT

(�Q

2

1

,�Q

2

2

, 0)
(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q

2

2

to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q

2

1

, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q

2

2

was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.

We compare the lattice data with results from the sum
rule, Eq. (10), using a phenomenological model for the
transverse �

⇤
�

⇤ ! hadrons cross section, �
0

+ �

2

, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡

+

⇡

� states [19] (using
scalar QED dressed with form factors). The �

⇤
�

⇤ !
meson form factors have not been measured experi-

Mhad (�
⇤(Q1)�

⇤(Q2) ! �⇤(Q1)�
⇤(Q2))

$ �0,2 (�
⇤(Q1)�

⇤(Q2) ! had.)

Direct calculation of hadronic light-by-light scattering Jeremy Green

we compute the local-conserved-conserved-conserved four-point function. In position space:

Ppos
µ1µ2µ3µ4(x1,x2,0,x4) =

D
Jl

µ3
(0)

h
Jc

µ1
(x1)Jc

µ2
(x2)Jc

µ4
(x4)+dµ1µ2dx1x2Tµ1(x1)Jc

µ4
(x4)

+dµ1µ4dx1x4Tµ4(x4)Jc
µ2
(x2)+dµ2µ4dx2x4Tµ4(x4)Jc

µ1
(x1)

+dµ1µ4dµ2µ4dx1x4dx2x4Jc
µ4
(x4)

iE
,

(2.2)

where the contact terms ensure that this satisfies the conserved-current Ward identities using the
backward lattice derivative D,

Dx1
µ1

Ppos
µ1µ2µ3µ4 = Dx2

µ2
Ppos

µ1µ2µ3µ4 = Dx4
µ4

Ppos
µ1µ2µ3µ4 = 0. (2.3)

In our implementation, we have verified that these hold on each gauge configuration.

Figure 2: The five classes of quark contractions for four-point functions. In this work, we compute only the
leftmost, fully-connected set of contractions.

There are five classes of quark contractions (Fig. 2) required to evaluate the four-point func-
tion. We evaluate only the fully-connected ones, with fixed kernels summed over x1 and x2:

Ppos0

µ1µ2µ3µ4(x4; f1, f2) = Â
x1,x2

f1(x2) f2(x2)Ppos
µ1µ2µ3µ4(x1,x2,0,x4). (2.4)

Using fixed kernels allows this to be evaluated using the combination of a point-source propagator
from the origin, and single- and double-sequential propagators that contain one or both of the
kernels. If we define Jµ(x) and Tµ(x) to be the point-split insertions in Eq. (2.1), then these three
kinds of propagators are

S0(x) ⌘ S(x,0), S f µ ⌘ S

Â
x

f (x)Jµ(x)S0

�
,

S f µ;gn ⌘ S

Â
x

f (x)Jµ(x)Sgn +Â
x

g(x)Jn(x)S f µ +dµn Â
x

f (x)g(x)Tµ(x)S0

�
,

(2.5)

and, noting that Jµ(x) is g5-antihermitian and Tµ(x) is g5-hermitian, the connected four-point
function is obtained as

Ppos0,conn
µ1µ2µ3µ4(x4; f1, f2) = �

D
Tr
⇣

gµ3g5

h
S†

f ⇤
1 µ1; f ⇤

2 µ2
g5Jµ4(x4)S0 +S†

0g5Jµ4(x4)S f1µ1; f2;µ2

�S†
f ⇤
2 µ2

g5Jµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Jµ4(x4)S f2µ2

+dµ1µ4 f1(x4)
�
S†

0g5Tµ4(x4)S f2µ2 �S†
f ⇤
2 µ2

g5Tµ4(x4)S0
�

+dµ2µ4 f2(x4)
�
S†

0g5Tµ4(x4)S f1µ1 �S†
f ⇤
1 µ1

g5Tµ4(x4)S0
�

+dµ1µ4dµ2µ4 f1(x4) f2(x4)S†
0g5Jµ4(x4)S0

i⌘E
.

(2.6)

3

Q1	

Q2	

Q1	

Q2	
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Dispersive approach for HLbL 
 [ Colangelo et al. 2014, 2015, Pauk&Vanderhaeghen 2014 ]  

	
n  Using crossing symmetry, gauge invariance, 138 form factors are 

reduced 12 relevant for HLbL 
 
 
 
 
n  π0, η,η’ exchange,  pion-loop (exactly scalar QED with pion Form 

factor) 

n  other contribution is neglected 

and the ˆ

⇧

i

are needed for the reduced kinematics

s = (q1 + q2)
2, t = q2

2 , u = q2
1 , q2

1 , q2
2 , q2

3 = (q1 + q2)
2, k2

= q2
4 = 0. (4.20)

The explicit result of the trace calculation and the contraction of the Lorentz indices is given in App. E.1.
We can reduce the number of terms contributing to (g � 2)

µ

further by using the symmetry under the
exchange of the momenta q1 $ �q2: the loop integration measure and the product of propagators are invariant
under this transformation, while the kernels ˆT

i

transform under q1 $ �q2 as

ˆT1  ! ˆT1, ˆT2  ! ˆT3, ˆT4  ! ˆT4, ˆT5  ! ˆT6,

ˆT7  ! ˆT8, ˆT9  ! ˆT12, ˆT10  ! ˆT13, ˆT11  ! ˆT14,

ˆT15  ! ˆT15, ˆT16  ! ˆT16, ˆT17  ! ˆT18, ˆT19  ! � ˆT19. (4.21)

For the reduced kinematics (4.20) the exchange q1 $ �q2 is equivalent to the crossing transformation t $ u,
q2
1 $ q2

2 . With the help of the crossing relations of the scalar functions ⇧

i

, it is easy to check that the ˆ

⇧

i

transform analogously to the kernels ˆT
i

, i.e.

ˆ

⇧1  ! ˆ

⇧1, ˆ

⇧2  ! ˆ

⇧3, ˆ

⇧4  ! ˆ

⇧4, ˆ

⇧5  ! ˆ

⇧6,

ˆ

⇧7  ! ˆ

⇧8, ˆ

⇧9  ! ˆ

⇧12, ˆ

⇧10  ! ˆ

⇧13, ˆ

⇧11  ! ˆ

⇧14,

ˆ

⇧15  ! ˆ

⇧15, ˆ

⇧16  ! ˆ

⇧16, ˆ

⇧17  ! ˆ

⇧18, ˆ

⇧19  ! �ˆ

⇧19. (4.22)

Therefore, it is convenient to write the HLbL contribution to (g � 2)

µ

as a sum of 12 terms:

aHLbL
µ

= �e6

Z

d4q1

(2⇡)

4

d4q2

(2⇡)

4

1

q2
1q2

2(q1 + q2)
2

1

(p + q1)
2 �m2

µ

1

(p� q2)
2 �m2

µ

⇥
12
X

j=1

⇠
j

ˆT
ij (q1, q2; p)

ˆ

⇧

ij (q1, q2,�q1 � q2), (4.23)

where

{i
j

|j = 1, . . . , 12} = {1, 2, 4, 5, 7, 9, 10, 14, 15, 16, 17, 19},

{⇠
j

|j = 1, . . . , 12} = {1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1}. (4.24)

Note that the first two terms in this sum correspond to the well-known result for the pion-pole contribution [19]
(up to conventions: exchange of ˆT1 and ˆT2, the explicit factor ⇠2 = 2, and symmetrization of ˆT1).

In (4.23), the integrand depends on the five scalar products q2
1 , q2

2 , q1·q2, p·q1, and p·q2, where the dependence
on the last two is given explicitly (the scalar functions only depend on q2

1 , q2
2 , and q1 · q2). Therefore, five of

the eight integrals can be performed without knowledge of the scalar functions. The same integrals as in the
case of the pion-pole contribution occur [3, 19], which have been solved with the technique of Gegenbauer
polynomials [50]. This method has been applied before to the full HLbL contribution in the context of vector-
meson-dominance and hidden-local-symmetry models [51, 52].

We perform a Wick rotation of the momenta q1, q2, and p (see Sect. 4.4) and denote the Wick-rotated
Euclidean momenta by capital letters Q1, Q2, and P . Note that Q2

1 = �q2
1 , Q2

2 = �q2
2 , P 2

= �m2
µ

. Since aHLbL
µ

is a pure number, it does not depend on the direction of the momentum P of the muon, hence we can take the
angular average by integrating over the four-dimensional hypersphere:

aHLbL
µ

=

Z

d⌦4(P )

2⇡2
aHLbL

µ

. (4.25)

21

Digression: why we disagree with Arkady

=
Fπ0γ∗γ∗(q2

1 , q
2
2)Fπ0γ∗γ∗(q2

3 , q
2
4)

s − M2
π

Separation into subproblems:

1 Dispersive reconstruction of the full HLbL tensor ⇒ Mandelstam variables s, t, u and

general, fixed virtualities q2
i

2 Perform limit q4 → 0, then momentum integrals in g − 2

↪→ pion pole completely unambiguous in this framework

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 11

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

In JHEP 2014 paper

ΠFsQED
µνλσ = F V

π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)

×

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

Separate contribution with two simultaneous cuts

Analytic properties like the box diagram in sQED

Triangle and bulb required by gauge invariance

Multiplication with vector form factor F V
π gives correct q2-dependence ⇒ FsQED

Claim: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 12
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Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

* quark +

QCD+quenched QEDA

�
*

quark

+

QCD+quenched QEDB

* +

quenched QEDA

= 3⇥

xsrc xsnk
y

0
, �

0
z

0
, ⌫

0
x

0
, ⇢

0

xop, µ

z, ⌫

y, � x, ⇢

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=m
µ
=0.1, 243)

QED, (mloop=m
µ
=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (m

π
=330 MeV)

hadronic models, F2(0)

quark-connected part of HLbL

a�1 = 1.7848 GeV, (2.7 fm)3

m
⇡

= 330 MeV, m
µ

= 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(↵2) noise, O(↵4) corrections

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

QCD+QED method [Blum et al 2015]	
2

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops.

the vacuum expectation value of an operator involving
quark fields requires the inversion of the quark Dirac op-
erator Dmq

[

UQCD
]

for each gluon field (QCD configu-
ration), UQCD. The cost of inversion of this operator
for every pair of source and sink points on the lattice
is prohibitive since it requires solving the linear equa-
tion Dmq

[

UQCD
]

xr = br for Nsites number of sources,
br, where Nsites is the total number of lattice points. In
most problems, such as hadron spectroscopy, all of these
inversions are not necessary. For our problem, the corre-
lation of four electromagnetic currents must be computed
for all possible values of two independent four-momenta.
This implies (3 × 4 × Nsites)2 separate inversions, per
QCD configuration, quark species, and four-momentum
of the external photon to calculate the connected diagram
in Fig. 2, which is astronomical. Therefore, a practical
method with substantially less computational cost is in-
dispensable.
A non-perturbative QCD+QED method which treats

the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [9],

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL

= −
∑

q=u,d,s

(Qqe)
2
∑

k

{〈

γµSq(top,−q; k)γνSq(k; top,−q)

δνρ

k̂2
G(t′,p′;−k)γρG(−k; 0,−p)

〉

QCD+QED

−⟨γµSq(top,−q; k)γνSq(k; top,−q)⟩QCD+QED

δνρ

k̂2
⟨G(t′,p′;−k)γρG(−k; 0,−p)⟩QED

}

, (1)

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1 for the
quarks. k is a Euclidean four-momentum, p is a three-
momentum, each quantized in units of 2π/L. δµν/k̂2

(k̂µ ≡ 2 sin(kµ/2)) is the lattice photon propagator in

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.

FIG. 3. Perturbative expansion of the first term in Eq. (1)
with respect to QED. The symbols ⟨, ⟩QCD+q-QED and
⟨, ⟩q-QED represent the average over QCD+QED configura-

tions (UQCD, AQED) and that over AQED, respectively. Terms
represented by the ellipsis contain four or more internal pho-
tons and so their orders are higher than α3.

Feynman gauge. Sq and G denote Fourier transforma-
tion of D−1

mq
and D−1

mµ
, respectively, and spin and color

indices have been suppressed. One takes t′ ≫ top ≫ 0 to
project onto the muon ground state

lim
t′≫top≫0

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL =

⟨0|ψ(0,p′)|p′, s′⟩
2E′V

⟨p′, s′|Γµ|p, s⟩
⟨p, s|ψ(0,p)|0⟩

2EV

×e−E′(t′−top)e−Etop , (2)

where the matrix element of interest is parametrized as

⟨p′, s′|Γµ|p, s⟩ ≡

ū(p′, s′)

(

F1(q
2)γµ + i

F2(q2)

2mµ
[γµ, γν ]qν

)

u(p, s). (3)

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. To extract
the form factors F1 and F2, Eq. (1) is traced over spins
after multiplication by one of the projectors, (1 + γt)/4
or i (1 + γt)γjγk/4, where j, k = x, y, z and k ̸= j. The
contribution to the anomaly is then found from aµ ≡
(gµ − 2)/2 = F2(0).
For now quenched QED (q-QED) is used for the QED

average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,

Subtrac,on	term	

-	Connected	part	only	
	
-	QED	only		calcula,on	consistent	
with	QED	loop	calcula,on	for	larger	
volume	
	
	-	QED+QCD	
		-	ball	park	of	model	values	
		-significant	exited	state	effects	?	
	

unsubtracted	term	
-  One	photon	is	treated	analy,cally	
-  other	two	sampled	stochas,cally	
-  needs	subtrac,on		
-  use	AMA	for	error	reduc,on	
-  use	Furry’s	theoretm	to	reduce	α2	noise	

Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ(HLbL) Summary/Outlook

aµ(HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

Stable as measurements increase (20 ⇥ 40 ⇥ 80 ⇥ 160 configs)
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Tom Blum (UConn / RIKEN BNL Research Center) The muon anomalous magnetic moment
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Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
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z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method	

n  [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex 
(external current)  is set to be conserved current (other three are local currents). All possible 
insertion are made to realize conservation of external currents config-by-config. 

 
 
 
 

n  [moment method , q2→0] By exploiting the translational covariance for fixed external 
momentum of lepton and external EM field, q->0 limit value is directly computed via the first 
moment of the relative coordinate, xop – (x+y)/2,  one could show 
   

 
 

     to directly get F2(0) without extrapolation. 
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F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :
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Disconnected HLbL would be non-negligible	

n  The major contribution, single pi0 (and η, η’）exchange diagrams 
through 2γ→π0, would have both connected and disconnected 
contributions. 
 
 
 
 
 

n  A quark model consideration for LbL pi0 exchange turns out to be 
Con : DisCon roughly same size with opposite sign  (L. Jin) 

n  Good news :  it’s not η’ (only), so S/N would not grow [P. Lepage] 
exponentially with the propagation length. 

n  Bad news :  it’s disconnected quark loops, and many of them.  	
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Systematic errors	

n  Missing disconnected diagrams  
   → compute them 
 

n  Finite volume  
   

n  Discretization error 
      → a scaling study for 1/a = 2.7 GeV, 64 cube lattice 
at physical quark mass is proposed to ALCC at Argonne 

 
n  ... 
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QCD box in QED box	

n  FV from quark is exponentially suppressed  ~ exp( - Mπ LQCD)    
n  Dominant FV effects would be from  photon 
n  Let photon and muon propagate in larger (or infinite) box than 

that of quark 

n   We could examine different lepton/photon in the off-line manner 
e.g.  QED_L (Hayakwa-Uno 2008) with larger box,  
Twisting Averaging [Lehner TI LATTICE14]  or  
Infinite Vol. Photon propagators    [C. Lehner, L.Jin, TI LATTICE15] 

Finite Volume Effects - QCD box inside QED box 29/36

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Figure 19. QCD box inside QED box illustration.

∑

r

[

∑

z,xop

1
2

x⃗op× ūs′(0) iF⃗
(

0; x=−
r

2
, y = +

r

2
; z, xop

)

us(0)

]

(36)

• The integrand decreases exponentially if one of r, z, or xop become large. The fact that
the sum is limited within the lattice only has exponentially suppressed effect. We have use
the moment method to take q→0 limit, eliminating that part of the “finite volume” effect.

• However, the integrand have implicit sum over x′, y ′, and z ′. Major finite volume effects
result from these three variables are limited within lattice.

• Solution: do not limit x′, y ′, and z ′ within the QCD box. We can sum over x′, y ′, and
z ′ in much larger QED boxes. We are also working on numerical strategies to compute
the sum in infinite volume. This way, we can capture the major part of the finite volume
effects with the QCD lattice just large enough to contain the quark loop.
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QED box in QCD box (contd.)	

n  Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV 
n  (16)3 = (1.8 fm)3 QCD box in (24)3= (2.7 fm)3 QED box	

423MeV Pion 163
× 32 Lattice V.S. 243

× 64 Lattice 30/36

Ensemble mπ L QCD Size QED Size
F2(q2 = 0)
(α/π)3

16I 3.87 163× 32 163× 32 0.1158(8)
24I 5.81 243× 64 243× 64 0.2144(27)

16I-24 163× 32 243× 64 0.1674(22)

Table 4. arXiv:1511.05198. Finite volume effects studies. a−1 = 1.747 GeV, mπ = 423 MeV,
mµ = 332MeV.

• Large finite volume effects with these ensembles and muon mass.

• Increasing the QED box size help reducing the finite volume effect, but haven’t completely
fixed the problem.

• Suggesting significant QCD finite volume effect.

• The histogram plot may help us further investigating this QCD finite volume effect.

72

the opposite of this choice, which can provide more information about QCD finite-volume

e↵ects:

Z0(x, y, z) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

3 if |x� y| > |x� z| and |x� y| > |y � z|
3/2 if |x� y| = |x� z| > |y � z| or |x� y| = |y � z| > |x� z|
1 if |x� y| = |x� z| = |y � z|
0 otherwise

.(5.2)

With this choice, in the small r region, the distances between x, y, z are all short, so the

QCD finite volume e↵ects should be small. The right plot of Figure 5.5 suggest that it is

indeed the case. In the small r region, where we control the QCD finite volume e↵ects,

the result from the 16I QCD/24 QED calculation agrees very well with 24I. However, as |r|
becomes larger, the quark loop evaluated in 16I is a↵ected by the boundary and begins to

deviate from the 24I results. Note because we use periodic boundary conditions for the quark

propagators, the maximum spatial separation between source and sink in any direction is 8

for quark propagators on the 16I lattice.

Figure 5.5: The plots show histograms of the contribution to F2 from di↵erent separations

|r| = |x � y|. The sum of all these points gives the final result for F2. The vertical lines at

|r| = 5 in the plots indicate the value of rmax. The left plot is evaluated with Z, so the small

r region includes most of the contribution. The right plot is evaluated with Z0 in place of Z,

so the QCD finite volume is better controlled in the small r region.
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Continuum Infinite Volume 
( a.k.a HVP way )               .  	

n  One could also use infinite volume/continuum lepton&photon 
diagram in coordinate space 

    [ J. Green et al. Mainz group, LAT16 proceedings] 

n  Techniques in continuum model calculation [ Knect Nyffeler 2002; 
Jegerlehner Nyffeler 2009 ] : angle average over muon momentum, 
and carry out angle of two virtual photons 	

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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It seems L(x1, x2) = L(x2, x1) I am puzzled why this is not x1 $,�x2, perhaps

indicating some mistake or a funny convention in Fourier transform. Also there

may be a way to make this nested 2 dim integral as a product of two 1-dim

integral, but can’t find so far.,

III. LBL
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Can Lattice produce a counter part ? 
[ J. Bijnens ] 	 Status of the

muon g-2
light by light
contribution

Johan Bijnens

Overview

HLbL
General
properties

π
0-exchange

π-loop
Quark-loop
Summary

Future

Conclusions

14/48

π
0 exchange

Which momentum regimes important studied: JB and

J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]

aµ =

∫

dl1dl2a
LL
µ with li = log(Pi/GeV )
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Mπ=170 MeV cHLbL result (contd.) 
	

  “Exact” ... q = 2pi / L,  
  “Conserved (current)” ... q=2pi/L, 3 diagrams 
  “Mom” ... moment method q->0, with AMA 

Method F2/(α/π)3 Nconf Nprop

√
Var rmax SD LD ind-pair

Exact 0.0693(218) 47 58 + 8× 16 2.04 3 −0.0152(17) 0.0845(218) 0.0186

Conserved 0.1022(137) 13 (58 + 8× 16)× 7 1.78 3 0.0637(34) 0.0385(114) 0.0093

Mom. (approx) 0.0994(29) 23 (217 + 512) × 2× 4 1.08 5 0.0791(18) 0.0203(26) 0.0028

Mom. (corr) 0.0060(43) 23 (10 + 48) × 2× 4 0.44 2 0.0024(6) 0.0036(44) 0.0045

Mom. (tot) 0.1054(54) 23

Table VIII. Results from three variants of the exact photon method obtained from the 32ID ensem-

ble. The first row, labeled “Exact”, corresponds to the row labeled 32ID in Tab. VI. The second

row, labeled “Conserved” is similar except all three arrangements of the vertices x, y and z are

combined insuring that the external current is conserved on each configuration. The final three

rows are obtained from the moment method and are explained in the text.

while the preceding two rows “Mom. (approx)” and “Mom. (corr)” show separately the

approximate AMA results and the needed correction term. The “SD” and “LD” columns

give the results from the pairs with |r| ≤ rmax and |r| > rmax, respectively. The “ind-

pair” column gives the error that would be expected if the long-distance pairs were truly

independent. Note that the quantity F2(q2) is computed at q2 = (2π/L)2 for the first two

rows and at q2 = 0 for the final three rows. The final error shown for the moment method

on the fifth line of Tab. VIII is obtained by applying the jackknife method to the sum of

the approximate AMA result and the AMA correction term. The resulting error is similar

to what would be found were the statistical error on the approximate and correction terms

computed separately and added in quadrature.

We should emphasize that the moment-method result given in the final line of Tab. VIII

is the most important numerical result presented in this paper. It provides the cHLbL

contribution (calculated directly at q2 = 0) to g − 2 for the muon with a 5% statistical

accuracy for the case of a pion with mπ = 171 MeV using a (4.6 fm)3 spatial volume but

with a relatively coarse lattice spacing a with 1/a = 1.378 GeV. More information about the

conserved and moment method calculations presented in Tab. VIII can be found in Fig. 8

where histograms and scatter plots are presented as functions of the separation of the two

stochastically chosen points x and y.

As a final topic in this section we apply the conserved method and the moment method,
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Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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EDM Experiments	
n  The present and future experiments are  

aiming  to check/exclude of MSSM 
                          
 pEDM @ BNL 

     nEDM @ ORNL, PSI,  ILL, J-PARC,    
                  TRIUMF ,FNAL, FRM2, ... 
     charged hadrons @ COSY 
 

⇒  a sensitivity of 10-29 e・cm ! 
 
 
 
 
 
 
 
 
 
 

n  Current theoretical estimations are  
   based on quark model,　sum rules, ...  

 
non-perturbative computations of  

   EDM     dn(θ, dq, dq
c, ...) 

   are necessary 

Harris,		0709.3100	
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1957	ORNL-Harvard	

nEDM	ORNL	SNS	

21 

EDMs: New CPV? 
•  SM 
�background� well 
below new CPV 
expectations 

•  New expts: 102 to 
103 more sensitive 

•  CPV needed for 
BAU?  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

ThO 

n 

3.1 x 10-29 

8.7 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 

10-33 

10-38 

10-31 

10-29 

10-28 

10-26 

neutron 

 proton 
& nuclei 

atoms 

~ 100 x better 
sensitivity Not shown: 

muon 



QCD ensemble for NEDM	

n  1/a = 1.73 GeV 
n  V=(2.7 fm)3 

n  Mpi = 330, 400 MeV 
n  750 configurations 
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n  1/a = 1.37 GeV 
n  V=(4.6 fm)3 

n  Mpi = 170 MeV 
n  39 configurations 



Chiral symmetry & EDM	

n  Chiral symmetry is broken 
by lattice systematic error 

    for Wilson-type quarks, which has  “wrong” Pauli term by O(a)   
 
 
 
n  CP violation from θ or other BSM operators introduce extra  artificial CP 

violation in simulation.   
 

n  In fact, chiral rotation of valence quark is not observable in continuum theory, 
and the EDM signal measured in Wilson quark due to valence quark’s θ is 
unphysical, which should be carefully removed by taking continuum limit a → 
0   [ S. Aoki-Gockschu, Manohar, Sharpe et al. Phys.Rev.Lett. 65 (1990) 
1092-1095 (1990) ] 
 

→   Our choice :   chiral lattice quark 
  called domain-wall fermions (DWF) 
[ 97 Blum Soni, 99 CP-PACS,  
  00- RBC, 05 RBC/UKQCD... ]   
 
 
 
 
 
 
 

1 2 Ls/2 Ls... ...

q(L) q(R)

T T T .....
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Qtop on lattice (Θ=0)	

•  Qtop history in simulation Nf=2+1 DWF, [ RBC/UKQCD] 
•  1/a= 1.73, 2.28 GeV 
•  mps =290 – 420 MeV	

99

TABLE XXXVIII: Topological charge and susceptibility. The measurement frequency, “meas. freq.”, and

“block size” are given in units of Monte Carlo time.

ml meas. freq. block size ⟨Q⟩ ⟨Q2⟩ ! (GeV4)

0.005 5 50 0.49 (25) 28.6 (1.4) 0.000290 (14)

0.01 5 50 -0.22 (37) 45.2 (2.5) 0.000458 (25)

0.004 4 200 0.59 (42) 11.4 (1.1) 0.000148 (14)

0.006 4 200 -0.07 (64) 24.8 (4.3) 0.000322 (55)

0.008 4 400 0.64 (100) 27.9 (5.6) 0.000363 (72)
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FIG. 52: Monte Carlo time histories of the topological charge. The light sea quark mass increases from top

to bottom, (0.005 and 0.01, 243 (top two panels), and 0.004-0.008, 323). Data for the 243 ensembles up to

trajectory 5000 were reported originally in [1] and the results from the new ensembles are plotted in black.

Most of the data was generated using the RHMC II algorithm (red and black lines). The RHMC 0 (green

line) and RHMC I (blue line) algorithms were used for trajectories up to 1455 for the ml = 0.01 ensemble.

The small gap in the top panel represents missing measurements which are irrelevant since observables are

always calculated starting from trajectory 1000.
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FIG. 53: Topological charge distributions. Top: 323, ml = 0.004− 0.008, left to right. Bottom: 243,

ml = 0.005 and 0.01.

tary pion masses in the range 290–420MeV (225–420MeV for the partially quenched pions). The

raw data obtained at each of the two values of β was presented in Sections III and IV respectively

and the chiral behaviour of physical quantities on the 243 and 323 lattices separately was studied

in AppendixA. The main aim of this paper however, was to combine the data obtained at the

two values of the lattice spacing into global chiral–continuum fits in order to obtain results in the

continuum limit and at physical quark masses and we explain our procedure in SectionV. In that

section we define our scaling trajectory, explain how we match the parameters at the different

lattice spacings so that they correspond to the same physics and discuss how we perform the ex-

trapolations. We consider this discussion to be a significant component of this paper and believe

that this will prove to be a good approach in future efforts to obtain physical results from lattice

data. Although we apply the procedures to our data at two values of the lattice spacing, we stress

that the discussion is more general and can be used with data from simulations at an arbitrary

number of different values of β . In the second half of SectionV we then perform the combined

continuum–chiral fits in order to obtain our physical results for the decay constants, physical bare
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Qtop at Mpi=170 MeV ensemble	

Introduction Configuration ensemble and measurement details Preliminary results Summary/Outlook

Topological Charge (170 MeV pion)

Charge distribution a bit sketchy!
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FIG. 1: Distribution of topological charge used in this simulation at light sea quark mass m = 0.005

(left) and m = 0.01 (right) in Iwasaki 243 lattice. The solid line represents the Gaussian distribution

function. hQ
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i is averaged value of topological charge at each ensemble.
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FIG. 2: Same as Figure 1 in DSDR 323 lattice.

P
4

. ↵
N

is obtained from Eq.(9). The fitting range of these observables is set to at 2
[7, 12](at 2 [6, 12]) for nucleon energy in local (smeared) sink, and at 2 [6, 10] for ↵

N

in both

local and smeared sink. As shown in Figure 3, the results of e↵ective mass plot of ✓-NLO

nucleon propagator has clear plateau and its plateau value is consistent with nucleon energy

obtained from ✓-LO nucleon propagator in both local and smeared sink. We also notice that

↵
N

is constant value within 1-� error even if the nucleon operator has the finite momentum.
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FIG. 2. Topological charge distributions for the ml = 0.001 (left) and ml = 0.0042 (right) ensembles.

for a quantity Y , where Ȳ is the expectation value over the ensemble, σ2 its variance, and ∆ is the

molecular dynamics time separation between measurements. The average in the second equation

is performed over the set of pairs of configurations separated by ∆ MD time units. In order to

correctly estimate the errors on the integrated autocorrelation time, we investigated two strategies:

1. At each fixed ∆ we formed a bootstrap distribution to estimate the error on the mean h...it

Used Full ensemble
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Imaginary Θ simulation QCDSF  
arXiv:1502.02295	

n  Perform dynamical simulation with imaginary   

topological susceptibility χt = ⟨Q
2⟩/V on 323×64 lattices taken from [6] at spacing a = 0.074 fm.

The charge Q has been computed from the Wilson flow [7] at flow time t0. Similar results have
been reported in [8]. As a result, dn will not vanish in the limit of zero quark mass either,
except perhaps for chiral fermions. Exactly that was found in [9]. This precludes a meaningful
extrapolation of dn to the physical point. There are indications that the situation will improve for
lattice spacings a ! 0.04 fm only [8].

It so happens that the θ term can be chirally rotated into the fermionic part of the action,
making use of the axial anomaly [10]. The outcome of that is

S θ = −
i

3
θ m̂ a4

∑

x

(

ūγ5u + d̄γ5d + s̄γ5s
)

, m̂−1 =
1

3

(

m−1
u + m−1

d + m−1
s

)

(3)

for three quark flavors with nondegenerate masses. This action lends itself to numerical simula-
tions for imaginary values of θ [11]. As we are mainly interested in small values of θ, the results
can be analytically continued to real numbers without difficulties, assuming that the theory is
analytic in the vicinity of θ = 0.

In this paper we present an entirely dynamical calculation of the electric dipole moment of
the neutron on the lattice. This is a challenging task. As dn quickly diminishes towards physical
quark masses, the angle θ has to be chosen increasingly larger to compensate for that. This in turn
leads to a substantial increase of zero modes, which slows down the simulations substantially and
eventually will result in exceptional configurations [12].

2 The simulation

We follow [13, 6] and start from the SU(3) flavor symmetric point mu = md = ms ≡ m0, where
mπ = mK . Our strategy has been to keep the singlet quark mass m̄ = (mu + md + ms)/3 fixed
at its physical value, while δmq = mq − m̄ is varied. As we move from the symmetric point to
the physical point along the path m̄ = constant, the s quark becomes heavier, while the u and d

quarks become lighter. These two effects tend to cancel in any flavor singlet quantity, such as the
topological susceptibility χt = ⟨Q

2⟩/V . The cancellation is perfect at the symmetric point [6].
We assume u and d quarks to be mass degenerate, writing mℓ = mu = md. The vacuum angle

is taken purely imaginary,
θ = i θ̄ . (4)

This leads us to consider the action

S θ = θ̄
mℓ ms

2ms + mℓ
a4

∑

x

(

ūγ5u + d̄γ5d + s̄γ5s
)

, (5)

which is real and vanishes at mℓ = 0 as well as ms = 0.
Our fermion action has single level stout smearing for the hopping terms together with un-

smeared links for the clover term. With the (tree level) Symanzik improved gluon action this
constitutes the Stout Link Non-perturbative Clover or SLiNC action [14]. To cancel O(a) terms
the clover coefficient cS W has been computed nonperturbatively. For each flavor the fermion
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Figure 8: The dipole moment of the neutron extrapolated to the physical point along the path
m̄ = constant.

of the neutron divided by F
θ̄,p
1 of the proton for ensemble 2. If the radii of the two form factors

are close to one another, the q2 dependence is largely cancelled out in the ratio. Indeed, the
ratio shows only a mild q2 dependence and thus may be extrapolated linearly to q2 = 0. The

extrapolated value is the renormalized form factor F̄ θ̄,n R
3 (0), using the fact that F̄

θ̄,p R

1 (0) = 1,

from which we obtain the electric dipole moment (12). In Fig. 7 we show our results for F̄ θ̄,n R
3 (0)

as a function of θ̄ for our two sets of quark masses. It should be noted that the actual expansion
parameter is λ, given in (7), which is a very small number.

Ultimately, we are only interested in F̄ θ̄3(0) (we drop the superscripts n,R on F3 from now on)
at very small values of θ̄. Even so, we do not have sufficient data to constrain the extrapolation
of F̄ θ̄3(0) to θ̄ = 0. This will result in a systematic error. To estimate the error, we have employed
a linear plus cubic fit, A θ̄ + B θ̄3, a Padé fit, A θ̄/(1 + B θ̄2), allowing for corrections of O(θ̄5) and
higher, as well as a linear fit, A θ̄, to the lowest θ̄ point each. We identify the central value of A

with the derivative of F̄ θ̄3(0) at θ̄ = 0, F̄(1)
3 (0). The coefficient A of the linear plus cubic fit shown

in Fig. 7 turns out to be close to the central value. The error of F̄(1)
3 (0) is estimated to be the

largest deviation of A from the central value. After continuing θ and Fθ3(0) back to real values,

we finally obtain, writing dn = e F(1)
3 (0) θ/2mN ,

mπ [MeV] mK [MeV] dn [e fm θ]
465(13) 465(13) −0.0297(38)
360(10) 505(14) −0.0215(25)

(18)

To extrapolate (18) to the physical point, we make use of the analytic expressions derived from
covariant U(3)L × U(3)R baryon chiral perturbation theory in [24] to NLO, with the additional
constraint 2m2

K + m2
π = constant ∝ m̄. This basically involves one free low-energy constant,

wa(µ), only. A fit to the lattice data gives wa(µ = 1 GeV) = 0.04(1) GeV−1. The result of the fit
is shown in Fig. 8. Note that dn vanishes at 2m2

K −m2
π = 0 due to the constraint m̄ = constant. At

9

the physical point this finally leads to

dn = −0.0039(2)(9) [e fm θ] . (19)

The first error is purely statistical. The second error is a conservative estimate of NNLO effects.
It covers the naive result from a polynomial extrapolation, dn = −0.0043 [e fm θ].

Our result (19) translates into constraints on CP violating contributions to the action at the
quark and gluon level. The current experimental bound on the electric dipole moment of the
neutron is [25] |dn

N | ≤ 2.9 × 10−13 [e fm]. Combining this bound with (19), we arrive at the upper
bound on θ,

|θ| ! 7.4 × 10−11 . (20)

5 Conclusions

It should be noted that in this exploratory work we have not included contributions from dis-
connected insertions of the electromagnetic current. However, since these contributions vanish
exactly at the flavor symmetric point, we do not expect them to have a significant effect to our
conclusions. It remains to be seen how big they are at the physical point.

The vacuum angle θ renormalizes as θR = (ZS
S /ZP) θ, where ZS

S and ZP are the renormaliza-
tion constants of the flavor-singlet scalar density and the pseudoscalar density, respectively. In
the continuum ZS

S /ZP = 1. A caveat of our calculations is that clover fermions, though O(a)
improved, break chiral symmetry at finite lattice spacings. On our present lattices ZS

S /ZP =

0.8 − 0.9 [26, 6, 16], which might imply a systematic error of O(10%).
To sum up, we have successfully computed the electric dipole moment of the neutron dn from

simulations of 2 + 1 flavor lattice QCD at imaginary vacuum angle θ, using the axial anomaly to
rotate the topological charge density into a flavor singlet pseudoscalar density in the fermionic
action. Only disconnected insertions of the pseudoscalar density contribute to the dipole moment,
which required the generation of new gauge field ensembles with the modified action (6). Clearly,
our results will have to be substantiated by simulations on larger lattices, at smaller pion masses
and smaller lattice spacings, as well as for a wider range of λ parameters. This is a challenging
task, which we hope to report on in due course.

Acknowledgements

This work has been partly supported by DFG, Grant Schi 422/9-1, the Australian Research Coun-
cil, Grants FT100100005 and DP140103067, DFG and NSFC through the Sino-German CRC
110, and NSFC, Grant 11165005. The numerical calculations were carried out on the Blue-
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To extrapolate (18) to the physical point, we make use of the analytic expressions derived from
covariant U(3)L × U(3)R baryon chiral perturbation theory in [24] to NLO, with the additional
constraint 2m2

K + m2
π = constant ∝ m̄. This basically involves one free low-energy constant,

wa(µ), only. A fit to the lattice data gives wa(µ = 1 GeV) = 0.04(1) GeV−1. The result of the fit
is shown in Fig. 8. Note that dn vanishes at 2m2

K −m2
π = 0 due to the constraint m̄ = constant. At
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Quenched calculation using gradient 
flow topological charge  

 Andrea Shindler [Thu, 9:30 ] 	
n  4 beta, a=0.1-0.05 fm, L ~ 1.5 fm 
n  gradient flow for Q_top 
n  non-perturbatively improved Wilson 
n  Mps ~ 800 MeV 
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Fig. 2. Left plot: flow-time dependence of the topological susceptibility at several lattice
spacings. Right plot: continuum limit of the topological susceptibility. The yellow band is
a linear extrapolation in a

2 compared with a constant fit.

updates, NHB, per sweep of NOR/NHB = 4/1. For thermalization we have per-
formed 2000 updates. For the finest lattice spacing, we have analyzed all correlation
functions skipping 800 gauges while for the remaining correlation functions we have
skipped 200 gauges. A summary of paramter runs is given in tab. 1.

With these choices we have observed no significant autocorrelation for all our lattice
spacings. We obtain the same outcome also for the correlation functions used for
the determination of the EDMs. A more detailed discussion of autocorrelations for
the fermionic correlation functions is given in sec. 5.

The gradient flow equation at finite lattice spacing is solved following app. C of
ref. [15] with step-size for the flow-time ✏ = 0.01. The topological charge density
is defined as in eq. (4.4) where Ga

µ⌫(x, t) is the lattice implementation of the field
tensor defined in ref. [38]. Any other definition of the topological charge density in
a pure Yang-Mills theory requires a finite multiplicative renormalization [39] that
has to be determined as a function of the bare coupling, in order to perform the
continuum limit. With the definition based on the gradient flow, this renormalization
factor is 1 independently of the lattice action used. Using the definition of the
topological charge density at non-vanishing flow-time given above, we can also define
the topological susceptibility

�
t

(t) =
1

V

Z

d4x d4y hq(t, x)q(t, y)i . (4.5)

The topological susceptibility defined as in eq. (4.5), but at vanishing flow-time
t = 0, not only needs a multiplicatively renormalization, but, more importantly, has
a 1/a4 power divergence 2 . However, with the definition at non-vanishing flow-time,

2 A notable exception is the definition of the topological susceptibility proposed in ref. [40]
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the topological susceptibility needs no renormalization and it has a well defined
continuum limit. We have computed �t for several lattice spacings as a function
of the flow-time. In the left plot of fig. 2 we show the topological susceptibility in
physical units as a function of

p
8t/r

0

. The divergence-free property of the gauge
fields at non-vanishing flow time allows us to perform the continuum limit at fixed
value of

p
8t/r

0

. In the continuum limit we expect the topological susceptibility to
be flow-time independent for every positive flow-time,

p
8t/r

0

> 0 [15].

For small flow-time values we observe two di↵erent e↵ects. First, for
p
8t . 0.1

fm we observe a rapid increase of �t that is just a reflection of the short distance
singularities discussed above. Second, for 0.1 fm .

p
8t . 0.2 fm we observe some

discretization e↵ects. For
p
8t > 0.2 fm we find complete agreement between all

lattice spacings and, as expected, �t is flow-time independent. We perform the con-
tinuum limit at

p
8t/r

0

= 0.8 and this is shown in the right plot of fig. 2 where we
compare a linear extrapolation in a2 with a constant one. We decide to quote as
final result

[�
t

]1/4 = 195.9(4.9) MeV , (4.6)

that is a constant fit including all lattice spacings. This result is in perfect agreement
with the result [41] obtained using the index theorem with a chiral lattice Dirac
operator and the result [42] obtained using the spectral projector method.

5 CP-broken vacuum and nucleon mixing

The form factor F
3

, directly related to the nucleon EDM, defined in eq. (3.7) can
be computed non-perturbatively with suitable ratios of the following 2- and 3-point
functions in a ✓ vacuum

G✓
NN(p, x0

) = a3
X

x

eipx
D

N (x, x
0

)N (0)
E

✓
, (5.1)

G✓
NJµN(p1

,p
2

, x
0

, y
0

) = a6
X

x,y

eip2(x�y) eip1y
D

N (x, x
0

)Jµ(y, y0)N (0)
E

✓
. (5.2)

Here, the baryon interpolating fields are

N (x) = "ABCuA(x)
h

uT
B(x)C�5dC(x)

i

, (5.3)

N (x) = "ABC

h

uT
A(x)C�5dTB(x)

i

uC(x) , (5.4)

and C is the charge conjugation matrix. We now describe in some detail the spectral
decomposition for the 2-point functions and defer to app. A for the slightly more
cumbersome spectral decomposition of the 3-point functions. Most of the discussion

based on spectral projectors.
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3

(Q2)/2MN of the proton
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2 as suggested from �PT
at NLO.

the form factor is expanded as

F P/N
3

(Q2)

2MN
= dP/N + SP/NQ

2 +HP/N(Q
2) . (6.5)

The values at Q2 = 0 are the nucleons EDMs and the slope in Q2 at small Q2,
SP/N , are the so called Schi↵ moments [53]. The functions HP/N(Q2), defined in [6],
scale as Q4 for small Q2 and they can be neglected for small enough values of Q2.
The numerical data for small Q2 indeed suggest a linear Q2 dependence. A linear
extrapolation in Q2 gives us the values of the proton and neutron EDMs.

d
P

= 0.0340(62) ✓ e · fm (6.6)

d
N

= �0.0318(54) ✓ e · fm (6.7)

If we make the reasonable assumption that at this relatively large value of the
pseudoscalar mass, quenched and unquenched calculations give comparable results,
we can try to estimate the values of the EDM at the physical point. To do so, we
use as constraint the fact that the EDM in the continuum has to vanish in the
chiral limit. In principle, we would like to use the �PT expressions in eqs. (2.4) and
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Fig. 13. Momentum dependence of the CP-odd form factor F
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2 as suggested from �PT
at NLO.

the form factor is expanded as

F P/N
3

(Q2)

2MN
= dP/N + SP/NQ

2 +HP/N(Q
2) . (6.5)

The values at Q2 = 0 are the nucleons EDMs and the slope in Q2 at small Q2,
SP/N , are the so called Schi↵ moments [53]. The functions HP/N(Q2), defined in [6],
scale as Q4 for small Q2 and they can be neglected for small enough values of Q2.
The numerical data for small Q2 indeed suggest a linear Q2 dependence. A linear
extrapolation in Q2 gives us the values of the proton and neutron EDMs.

d
P

= 0.0340(62) ✓ e · fm (6.6)

d
N

= �0.0318(54) ✓ e · fm (6.7)

If we make the reasonable assumption that at this relatively large value of the
pseudoscalar mass, quenched and unquenched calculations give comparable results,
we can try to estimate the values of the EDM at the physical point. To do so, we
use as constraint the fact that the EDM in the continuum has to vanish in the
chiral limit. In principle, we would like to use the �PT expressions in eqs. (2.4) and
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ETMC NEDM  
Andreas Athenodorou [ Thu, 11:00 ] 	

n  ETMC Nf=2+1+1, B55 ensemble 
n  a=0.082fm, Mpi = 373 MeV, L = 2.6 fm 
n  Qtop from various cooling and gradient flow 
n  F3(q2) extrapolation by dipole fit, coordinate space methods 

 (~ moment method)   W. Wilcox’s concern hep-lat/0204024 ?	

Results via the momentum elimination method

I We find a non-zero signal for the nEDM

I All definitions of Q
top

give a signal

I We do not observe autocorrelation

I In general F3(Q
2) is a very noisy

observable

I Results from averaging over momentum
classes with q

off

 5

standard method

y-summation Fn

3
(Q2 = 0)/(2m)

y-summation

Q2 [GeV2]

F
n 3
(Q

2
)/
(2
m
)
[e
·
fm

]

21.510.50
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-0.125

nEDFF from O(4700) gauge confs of B55 using
improved gluonic Q

top

and 50 steps of Iwasaki
cooling

Comparison of di↵erent methods
I Di↵erent definitions for Q

top

give good overall agreement

I Dipole fit , “momentum elimination” and “continuum derivative” give compatible values !
take weighted average

F
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top

Open (filled) symbols using cooling (gradient flow) in the evaluation of the topological charge

Final Result
F3(0)
2mN

= �0.046(8)(7) using a total of O(4700) measurements.
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top

give good overall agreement

I Dipole fit , “momentum elimination” and “continuum derivative” give compatible values !
take weighted average
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Final Result
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= �0.046(8)(7) using a total of O(4700) measurements.

On a periodic lattice with an even number of sites, choosing an origin forces one side or

the other of the lattice to have one extra spatial site. For this purpose, one needs to define

a function which represents a linear function everywhere except at the extra site, n = N ,

where, because it may be considered equally distant from the origin in either direction, we

will take it to be zero. (This is the same function used in the numerical evaluations in [3, 4].)

Thus,

F (n) =

⎧

⎪

⎨

⎪

⎩

n , n ̸= N

0 , n = N
(8)

We expand this in terms of the momentum eigenfunctions, eiqℓn,

F (n) =
N

∑

l=−N+1

Cℓ eiqℓn. (9)

Using Eq.(7), this gives

Cℓ =
1

2N

N−1
∑

n=−N+1

F (n) e−iqℓn. (10)

Summing this finite series in the usual way by multiplying both sides by a phase factor,

e−iqℓ , and shifting the summation limits (note that e±iqℓN = (−1)ℓ), one finds that

Cℓ =

⎧

⎪

⎨

⎪

⎩

i
2(−1)ℓ cot(qℓ/2) , ℓ ̸= 0

0 , ℓ = 0
(11)

This leads to

GpJjp(t2, t1; (x⃗1)i, Γk)

Gpp(t2; p⃗, Γ4)

∣

∣

∣

∣

∣

S

(t2−t1),t1 ≫1
−→ −

emN t1

4mN

ϵijk

∑

ℓ ̸=0

(−1)ℓ cot(qℓ/2)
e−Eℓ t1

Eℓ

(q⃗ℓ)iGm(Q2
ℓ). (12)

The “S” notation now reminds us that this result follows from explicitly performing the lat-

tice sum. The coordinate (x⃗1)i, when inserted in Eq.(5),projects over the lattice momentums

with a function given by Eq.(11).

The leading terms in Eq.(12) define what we will term the extreme Euclidean time limit

(EETL) on the t1 variable as,

GpJjp(t2, t1; (x⃗1)i, Γk)

Gpp(t2; p⃗, Γ4)

∣

∣

∣

∣

∣

S

EETL
−→ ϵijk

e(mN−E1) t1

E1
Gm(Q2

1), (13)

where we have approximated sin((q⃗1)i/2) ≈ (q⃗1)i/2. Eq.(13) is not suitable to measure the

magnetic moment on the lattice. At fixed finite (q⃗1)i, the signal involves only the lowest

nonzero component of Gm(Q2
1), and is not time independent.

4
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statistical checks	
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FIG. 11. The neutron EDM form factor F
3

/2m
N

(e·fm, lowest momentum, for various numbers

of configurations and values of N
G

. The percentages denote the rates of reduction of statistical

errors, defined as the ratio of the statistical error between full (bottom data) and reduced statistics

cases. The smaller panels show the distribution of jackknife estimates for each case. The solid line

denotes a Gaussian distribution function. 330 MeV pion (left) and 420 MeV pion (right) ensembles.

a range of time slices, 1, 5, 9 , 17, 33, and 64, symmetrically straddling the EM current

insertion on a given time slice. A plot of the nucleon EDM for such a reweighting is shown

in Fig. 17, and the corresponding mixing angle in Fig. 18.

One observes a dramatic decrease in the noise as the number of time slices that are

summed for the topological charge density decreases. Interestingly, the values appear to

reach a plateau between 9 and 17 time slices. In the future, we plan to investigate spatially

local reweighting. One needs to address issues of renormalization as well.
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F3 form factor, q2 dependence	

68	
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FIG. 12. The EDM form factor for neutron (circle) and proton (square), 330 MeV (top) and 420
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symbols, t
sep

= 0.9 fm.
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FIG. 13. The EDM form factor for the neutron (circle) and proton (square), 0.170 GeV pion,

I-DSDR 323 ensemble.

TABLE IX. Results of EDM and S0

Iwasaki 243 Proton Neutron

m
⇡

(GeV) t
sep

(fm) dp
N

(e·fm) stat. sys. S0
p

(e·fm3) dn
N

(e·fm) stat. sys. S0
n

(e·fm3)

0.33 1.37 0.030(29) 0.025 0.014 1.9(4.1)⇥10�4 �0.051(19) 0.019 0.005 �4.2(2.8)⇥10�4

0.33 0.9 0.011(12) 0.011 0.005 �2.1(1.4)⇥10�4 �0.024(9) 0.009 0.003 0.2(9)⇥10�4

0.42 1.37 0.065(31) 0.024 0.020 8.8(3.6)⇥10�4 �0.016(25) 0.016 0.019 �1.7(2.6)⇥10�4

0.42 0.9 0.035(18) 0.018 0.008 2.9(1.9)⇥10�4 �0.017(10) 0.010 0.012 �1.0(1.0)⇥10�4

I-DSDR 323 Proton Neutron

m
⇡

(GeV) t
sep

(fm) dp
N

(e·fm) stat. sys. S0
p

(e·fm3) dn
N

(e·fm) stat. sys. S0
n

(e·fm3)

0.17 1.3 0.092(134) 0.113 0.071 1.5(5.2)⇥10�3 �0.117(53) 0.053 0.011 �3.2(2.3)⇥10�3
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TABLE VI. EM and EDM form factors. Iwasaki 243, 330 MeV pion ensemble.

t
sep

= 1.37 fm

P N

q2(GeV2) F p

1

F p

2

F p

3

/2m
N

(e·fm) Fn

1

Fn

2

Fn

3

/2m
N

(e· fm)

-0.210 0.759( 6) 1.169(32) 0.019(17) -0.031( 3) -1.155(24) -0.038(13)

-0.405 0.622( 7) 0.893(25) 0.023(12) -0.048( 3) -0.899(19) -0.030( 9)

-0.586 0.509(10) 0.702(31) 0.012(15) -0.049( 5) -0.719(24) -0.017(11)

-0.760 0.421(15) 0.575(42) -0.002(19) -0.052( 9) -0.549(29) -0.017(14)

t
sep

= 0.9 fm

P N

q2(GeV2) F p

1

F p

2

F p

3

/2m
N

(e·fm) Fn

1

Fn

2

Fn

3

/2m
N

(e· fm)

-0.211 0.751( 2) 1.095(18) 0.014( 8) -0.024( 1) -1.128(13) -0.023( 7)

-0.407 0.607( 3) 0.865(14) 0.022( 7) -0.040( 2) -0.883(10) -0.026( 5)

-0.588 0.512( 8) 0.707(13) 0.026( 7) -0.053( 6) -0.719(10) -0.025( 5)

-0.757 0.447( 9) 0.573(17) 0.009( 7) -0.053( 6) -0.571(12) -0.015( 6)

F. Lattice results for the neutron and proton EDM

To extrapolate to q2 = 0 a simple linear function consistent with chiral perturbation

theory is used,

F
3

(q2)/2m
N

= d
N

+ S 0q2 +O(q4), (20)

where d
N

represents the leading order, and S 0 the next-to-leading order in the q2 dependence

of the EDM form factor. d
N

is defined as the EDM. Furthermore, according to ChPT [19, 20],

S 0 is related to the CP violating pion-nucleon coupling constant.

In Figs. 12 and 13 we show the q2 dependence of the EDM form factors. F
3

(q2) exhibits

mild q2 dependence within relatively large statistical errors. To estimate the systematic

uncertainty due to the linear extrapolation in q2, we compare two di↵erent fit ranges. Their

di↵erence is regarded as an indication of higher order non-linear terms that are neglected.

We choose fit ranges 0.20 GeV2  q2  0.55 GeV2 and 0.20 GeV2  q2  0.71 GeV2. The

values and statistical errors in Tab. IX correspond to the latter, and the systematic error is

17



tensor charge & quark EDM 
	

n  BSM operators, such as quark EDM, or quark chromo EDM, are also 
interesting/important besides Θ term 

n  Quark EDM is related to the tensor charge of QCD 
    (arXiv:1502.07325, 1506.04196, 1506.06411) 

n  Operator renormalization/mixing will be also discussed.	
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(plan B) Interplays between lattice 
and dispersive approach  g-2	

n  R-Ratio error  ~ 0.6%, HPQCD error ~ 2% 
n  Goal would be ~ 0.2 % 
n  Dispersive approach from R-ratio  R(s) 
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Q
2
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2
]

0
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)

also	[	ETMC,	Mainz,	...	]		 70	



n  Can we combine dispersive & lattice and get more precise (g-2)HVP 
than both ?      [ 2011 Bernecker Meyer ] 

n  Inverse Fourier trans to Euclidean vector correlator 
n  Relevant for g-2   Q2 = (mµ/2)2 = 0.0025 GeV2 
n  It may be interesting to think  

0 10 20 30 40 50
t/a

-0.05

0

0.05

0.1

0.15 Disparsive (Q2=0.0025 GeV
2
)

Lattice (Q2 = 0.0025 GeV
2
)

Pihat(Q2)  integrand in coordinate space
Lattice : u,d,s connected, no continuum limit

0 10 20 30 40 50

0
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0.1

0.15

0.2

P
2
 = 0.1 GeV

2

Black	:	R-ra,o	,	alpha	QED	(Jegerlehner)	
Red	:	Lakce	(DWF)	

2.2	fm	
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Vus extraction strangeness tau 
inclusive decay  	

|us|V
0.215 0.22 0.225

 decays, PDG 2013l3K
 0.0014±0.2253 

 decays, PDG 2013l2K
 0.0010±0.2253 

CKM unitarity, PDG 2013
 0.0010±0.2255 

 s inclusive, HFAG 2014→ τ
 0.0021±0.2176 

, HFAG 2014νπ → τ / ν K→ τ
 0.0019±0.2232 

, HFAG 2014ν K→ τ
 0.0020±0.2212 

 average, HFAG 2014τ
 0.0014±0.2204 

HFAG-Tau
Summer 2014

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 10
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Tau decay

• ⌧ ! ⌫ + had through V-A vertex

• Apply the optical theorem to related to VV and AA hadronic vacuum polarization (HVP)

• For hadrons with strangeness -1, CKM matrix elements V
us

is multiplied

• ⌫ takes energy away, makes differential cross section is related to the HVPs (c.f. in
e

+

e

� case, the total cross section is directly related to HVP )

R

ij

=

�(⌧

� ! hadrons
ij

⌫

⌧

)

�(⌧

� ! e

�
⌫̄

e

⌫

⌧

)

=

12⇡|V 2

ij

|S
EW

m

2

⌧

Z
m

2

⌧

0

✓
1 �

s

m

2

⌧

◆✓
1 + 2

s

m

2

⌧

◆
Im⇧

(1)

(s) + Im⇧

(0)

(s)

�

| {z }
⌘ Im⇧(s)

• The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) current-current two
point

⇧

µ⌫

ij;V/A

(q

2

) = i

Z
d

4

xe

iqx

D
0|TJ

µ

ij;V/A

(x)J

†µ
ij;V/A

(0)|0
E

= (q

µ

q

⌫ � q

2

g

µ⌫

)⇧

(1)

ij;V/A

(q

2

) + q

µ

q

⌫

⇧

(0)

ij;V/A

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 5
73	



Finite Energy Sum Rule (FESR)

• Do the finite radius contour integral

• Real axis integral from experimental R
⌧

• Use pQCD and OPE for the large circle integral

• Any analytic weight function w(s)

Z
s

0

s

th

Im⇧(s)w(s) =

i

2

I

|s|=s

0

ds⇧(s)w(s)

Re(s)

Im(s)
pQCD OPE spectral data

1

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 6
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Combining FESR and Lattice

• If we have a reliable estimate for⇧(s) in Euclidean (space-like) points, s = �Q

2

k

< 0,

we could extend the FESR with weight function w(s) to have poles there,

Z 1

s

th

w(s)Im⇧(s) = ⇡

N

pX

k

Res
k

[w(s)⇧(s)]

s=�Q

2

k

⇧(s) =

✓
1 + 2

s

m

2

⌧

◆
Im⇧

(1)

(s) + Im⇧

(0)

(s) / s (|s| ! 1)

• For N
p

� 3, the |s| ! 1 circle integral vanishes.

Re(s)

Im(s)
pQCD OPE spectral data

1

XXX

Lattice HVPs

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 11
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weight function w(s)

• Example of weight function

w(s) =

N

pY

k

1

(s + Q

2

k

)

=

X

k

a

k

1

s + Q

2

k

, a

k

=

X

j 6=k

1

Q

2

k

� Q

2

j

=)
X

k

(Q

k

)

M

a

k

= 0 (M = 0, 1, · · · , N
p

� 2)

• The residue constraints automatically subtracts ⇧(0,1)

(0) and s⇧

(1)

(0) terms.

• For experimental data, w(s) ⇠ 1/s

n

, n � 3 suppresses

. larger error from higher multiplicity final states at larger s < m

2

⌧

. uncertanties due to pQCD+OPE at m2

⌧

< s

• For lattice, Q2

k

should be not too small to avoid large stat. error, Q2 ! 0 extrapola-
tion, Finite Volume error(?). Also not too larger than m

2

⌧

to make the suppression in
time-like 0 < s < m

2

⌧

working.

• Other w(s) could be useful to enhance some region s > 0 which may be usable for
(g � 2)

µ

HVP (?)

• c.f. HPQCD’s HVP moments works

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 12
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Preliminary	results	
[	H.	Ohki,	A.	Ju�ner,	C.	Lehner,	K.	Maltman	et	al.	]	

Our	result		
for	all	channels	

All	our	results	(C<1,	N=3,4)	are	consistent	with	each	other.		
Note	:	Other	systema,c	errors	of	sea	quark	mass	chiral	extrapola,on,	lakce	O(a^4)	

discre,za,on,		
and	higher	order	OPE	have	not	been	included.	These	must	be	assessed	in	a	future	study.	
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AMA+MADWF(fastPV)+zMobius accelerations  	
n  We utilize  complexified  5d hopping term of Mobius action [Brower, Neff, Orginos], 

zMobius,  for a better approximation of the sign function. 
 
 
 
 

n  1/a~2 GeV, Ls=48 Shamir ~  Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s 
complex varying) ~5 times saving for cost AND memory 

 
 
 
 
 
 
 
 
 
n  The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of 

condition number due to order of magnitudes hierarchy of b_s, c_s  [also Neff found this]  
 
 
 

n  Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, 
Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D   
  [Edward, Heller] 

n  All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical 
point 48 cube case. And ~100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this 
proposal (1,200 eigenV for 32cube) . 

 	

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012 Ls	 	|eps(48cube)	–	eps(zMobius)|	

6	 0.0124	

8	 0.00127	

10	 0.000110	

12	 8.05e-6	
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n  O(imp) has smaller error 
O(appx) need to be cheap &  not to be too 
accurate  
NG  suppresses the bulk part of noise cheaply 
        

Expensive		:		infrequently	measured		 Cheap			:		frequently	measured		

Lakce	
Symmetry	

Covariant Approximation Averaging ( CAA )  
 a new class of Error reduction techniques	

[	Blum,	TI,	Shintani	PRD	88	(2013)	094503	]	

Original	

unbiased	
imporved	

ensemble	

ensemble		

ε	

ε	

+	

New	bias-free	es,mator	even	without	covariant	
approxima,on	by	a	stochas,c	choice	of	source	
loca,on	for	the	exact/rest	computa,on	is	now	
available		:					Appendix	D		of		arXiv:1402.0244		
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Examples of Covariant Approximations 
(contd.)	

n  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy	control	:	
•  	low	mode	part	:	#	of	eig-mode	
•  	mid-high	mode	:		degree	of	poly.	If	quark	mass	is	heavy,	e.g.		~	strange,		

low	mode	isola,on	may	be	unneccesary	 80	


