Light tetraquarks and the chiral phase transition

Vladimir Skokov, RIKEN/BNL Research Center \& RDP: 1606.04111

$\mathrm{XYZ}, \mathrm{P}_{\mathrm{c}}$ states: strong evidence for tetraquark \& pentaquark states, composed of both light and heavy quarks

Why do we need heavy quarks to see tetraquark states?
Jaffe '79...Schechter...Close...Tornqvist...Maiani...Giacosa....Peleaz '15: "the" σ meson is "a" tetraquark (diquark anti-diquark). But situation murky....

Punchline: tetraquarks must be included to understand the phase diagram of QCD (versus quark mass, plane of temperature T and baryon chemical potential μ)

Tetraquarks: for three (not two) flavors of very light quarks, tetraquarks may generate a second chiral phase transition

For QCD, in the plane of $\mathrm{T} \& \mu$ plane:
direct connection between tetraquarks and color superconductivity

Tetraquarks for two light flavors: meh, no big deal

Chiral symmetry for two flavors

Classically, chiral symmetry $\mathrm{G}_{\mathrm{cl}}=\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{A}}=\mathrm{O}(4) \times \mathrm{O}(2)$

Use ϕ, complex 4-component vector Linear σ model for exact χ symmetry:

$$
\phi=\left(\sigma+i \eta, \vec{a}_{0}+i \vec{\pi}\right)
$$

$$
\mathcal{L}^{c l}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{*} \cdot \phi+\lambda\left(\phi^{*} \cdot \phi\right)^{2}+\ldots
$$

Quantum mechanically, axial anomaly reduces $\mathrm{U}(1)_{\mathrm{A}}->\mathrm{Z}(2)_{\mathrm{A}}: \phi \rightarrow(-) \phi$ Simplest term which is only $\mathrm{Z}(2)_{\mathrm{A}}$ invariant:

$$
\mathcal{L}^{A}=+m_{A}^{2}(\operatorname{Im} \phi)^{2}+\ldots
$$

With $\mathrm{G}_{\mathrm{cl}}, \eta$ degenerate with π. With axial anomaly, η splits from massless π Directly induced by instantons + ...

Diquarks and tetraquarks for two flavors

Jaffe '79: most attractive channel for quark-quark scattering is antisymmetric in both flavor and color.

Color: $3 \times 3=\underline{3}($ antisym $)+6($ sym $)$
Two flavors: $2 \times 2=1$ (antisym) +3 (sym)

For two flavors diquark is a color triplet, flavor singlet,

$$
\chi_{L}^{A}=\epsilon^{A B C} \epsilon^{a b}\left(q_{L}^{a B}\right)^{T} \mathcal{C}^{-1} q_{L}^{b C}
$$

(A, $\mathrm{B}, \mathrm{C}=$ color; $\mathrm{a}, \mathrm{b}=$ flavor) Also $\chi_{\mathrm{R}} . \chi_{\mathrm{L}}$ and χ_{R} singlets under $\mathrm{Z}(2)_{\mathrm{A}}$.
One complex valued tetraquark field:

$$
\zeta=\left(\chi_{R}^{A}\right)^{*} \chi_{L}^{A}
$$

Sigma models and tetraquarks for two flavors

The tetraquark field ζ is a singlet under flavor and $\mathrm{Z}(2)_{\mathrm{A}}$.
Split complex ζ into its real and imaginary parts, ζ_{r} and ζ_{i}.
QCD is even under parity, so only even powers of ζ_{i} can appears, forget ζ_{i}.
But any powers of ζ_{r} can!

$$
\mathcal{V}_{\zeta_{r}}^{A}=h_{r} \zeta_{r}+m_{r}^{2} \zeta_{r}^{2}+\kappa_{r} \zeta_{r}^{3}+\lambda_{r} \zeta_{r}^{4}
$$

Hence $\left\langle\zeta_{r}\right\rangle$ is always nonzero!
Couplings to ϕ start with:

$$
\mathcal{V}_{\zeta \phi}=\kappa \zeta \phi^{*} \cdot \phi+\ldots
$$

The tetraquark ζ_{r} is just a massive field with a v.e.v.

Chiral transition for two flavors

Assume anomaly is large up to T_{χ}.

$$
\mathcal{V}_{\phi}=\frac{m^{2}}{2} \phi^{2}+\lambda \phi^{4}
$$

$$
\mathrm{T}=\mathrm{T}_{\chi}: \mathrm{m}^{2}=0,\langle\phi\rangle=0 \Downarrow
$$

$\mathrm{T} \gg \mathrm{f}_{\pi}: \mathrm{m}^{2}>0$, $\langle\phi\rangle=0 \quad=>$

Chiral transition second order, $\mathrm{m}^{2}=0=>$ infinite correlation length $\mathrm{O}(4)$ universality class.

Tetraquark field just doesn't matter: massive field with cubic couplings

Tetraquarks for three light flavors: must be included

Chiral symmetry, three flavors

Quark Lagrangian

$$
\mathcal{L}^{q k}=\bar{q} \not D q=\bar{q}_{L} \not D q_{L}+\bar{q}_{R} \not D q_{R} \quad, \quad q_{L, R}=\frac{1 \pm \gamma_{5}}{2} q
$$

Classical $\mathrm{G}_{\mathrm{cl}}=\mathrm{SU}(3)_{\mathrm{L}} \times \operatorname{SU}(3)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{A}}$:

$$
q_{L} \rightarrow \mathrm{e}^{-i \alpha / 2} U_{L} q_{L} \quad, \quad q_{R} \rightarrow \mathrm{e}^{+i \alpha / 2} U_{R} q_{R}
$$

Order parameter for χ symmetry breaking ($\mathrm{a}, \mathrm{b} \ldots=$ flavor; $\mathrm{A}, \mathrm{B} \ldots=$ color $)$

$$
\Phi^{a b}=\bar{q}_{L}^{b A} q_{R}^{a A} \quad \Phi \rightarrow \mathrm{e}^{+i \alpha} U_{R} \Phi U_{L}^{\dagger}
$$

Axial anomaly reduces $\mathrm{U}(1)_{\mathrm{A}}$ to $\mathrm{Z}(3)_{\mathrm{A}}$.

σ models for χ symmetry

$\mathrm{U}(1)_{\mathrm{A}}$ invariant terms:

$$
\mathcal{V}_{\Phi}=m^{2} \operatorname{tr}\left(\Phi^{\dagger} \Phi\right)-c_{A}(\operatorname{det} \Phi+\text { c.c. })+\lambda \operatorname{tr}\left(\Phi^{\dagger} \Phi\right)^{2}
$$

Drop $\left(\operatorname{tr} \Phi^{+} \Phi\right)^{2}$, small.
χ sym. broken by background field:

$$
\mathcal{V}_{H}^{0}=-\operatorname{tr}\left(H\left(\Phi^{\dagger}+\Phi\right)\right)
$$

To split the η ' from the $\pi, K, \& \eta$,

$$
\mathcal{V}^{A}=\kappa(\operatorname{det} \Phi+\text { c.c. })
$$ $\operatorname{add} \mathrm{Z}(3)_{\mathrm{A}}$ invariant term

Example: $\mathrm{SU}(3)$ symmetric case, $\mathrm{H}=\mathrm{h} 1$.
$\mathrm{J}^{\mathrm{P}}=0^{-}$: octet $\pi=\mathrm{K}=\eta$ \& singlet $\eta^{\prime} \cdot \mathrm{J}^{\mathrm{P}}=0^{+}$: octet $\mathrm{a}_{0}=\chi=\sigma_{8} \&$ singlet σ $\mathrm{h} \neq 0$ so π 's massive . Satisfy ('t Hooft '86):

$$
m_{\eta^{\prime}}^{2}-m_{\pi}^{2}=m_{a_{0}}^{2}-m_{\sigma}^{2}
$$

The anomaly moves η^{\prime} up from the π, but also moves singlet σ down from the a_{0} ! Light σ is a problem for σ models

Tetraquarks for three flavors

Three flavors: $3 \times 3=\underline{3}+6$. Diquark field flavor anti-triplet, $\underline{3}$

$$
\chi_{L}^{a A}=\epsilon^{a b c} \epsilon^{A B C}\left(q_{L}^{b B}\right)^{T} \mathcal{C}^{-1} q_{L}^{c C}
$$

LR tetraquark field ζ transforms identically to Φ under $\mathrm{G}_{\mathrm{\chi}}=\mathrm{SU}(3)_{\mathrm{L}} \mathrm{x} \operatorname{SU}(3)_{\mathrm{R}}$

$$
\zeta^{a b}=\left(\chi_{R}^{a A}\right)^{*} \chi_{L}^{b A}
$$

Under $\mathrm{U}(1)_{\mathrm{A}}, \Phi$ has charge $+1, \zeta$ charge -2 .

Since $\zeta \& \Phi$ in same representation of G_{χ},
direct mixing term. $\mathrm{Z}(3)_{\mathrm{A}}$ invariant:

$$
\mathcal{V}_{\zeta \Phi, 2}^{A}=\widetilde{m}^{2} \operatorname{tr}\left(\zeta^{\dagger} \Phi+\Phi^{\dagger} \zeta\right)
$$

Black, Fariborz, Schechter ph/9808415 +; 't Hooft, Isidori, Maiani, Polosa $0801.2288+\ldots$

An extra dozen couplings. E.g., $\mathrm{U}(1)_{\mathrm{A}}$ invariant:

$$
\mathcal{V}_{\zeta \Phi, 3}^{\infty}=\kappa_{\infty} \epsilon^{a b c} \epsilon^{a^{\prime} b^{\prime} c^{\prime}}\left(\zeta^{a a^{\prime}} \Phi^{b b^{\prime}} \Phi^{c c^{\prime}}+\text { c.c. }\right)
$$

"Mirror" model, $\mathrm{T}=0$

Spectrum : $\Phi=\pi, K, \eta, \eta^{\prime} ; a_{0}, \kappa, \sigma_{8}, \sigma_{0} ; \zeta=\widetilde{\pi}, \widetilde{K}, \widetilde{\eta}, \widetilde{\eta}^{\prime} ; \widetilde{a}_{0}, \widetilde{\kappa}, \widetilde{\sigma}_{8}, \widetilde{\sigma}_{0}$.

General model has 20 couplings:

Fariborz, Jora, \& Schechter: ph/0506170; 0707.0843; 0801.2552. Pelaez, 1510.00653

Instead study "mirror" model, where Φ and ζ start with identical couplings

$$
\begin{gathered}
\mathcal{V}_{\Phi}=m^{2} \operatorname{tr}\left(\Phi^{\dagger} \Phi\right)-\kappa(\operatorname{det} \Phi+\text { c.c. })+\lambda \operatorname{tr}\left(\Phi^{+} \Phi\right)^{2} \\
\mathcal{V}_{\zeta}=m^{2} \operatorname{tr}\left(\zeta^{\dagger} \zeta\right)-\kappa(\operatorname{det} \zeta+\text { c.c. })+\lambda \operatorname{tr}\left(\zeta^{+} \zeta\right)^{2}
\end{gathered}
$$

Assume only $\zeta \Phi$ coupling is mass term:

$$
\mathcal{V}_{\zeta \Phi, 2}^{A}=\widetilde{m}^{2} \operatorname{tr}\left(\zeta^{\dagger} \Phi+\Phi^{\dagger} \zeta\right)
$$

Simple, because mass only mixes: $\pi \leftrightarrow \widetilde{\pi}, K \leftrightarrow \widetilde{K} \ldots$

Spectrum of the mirror model

In the chiral limit, the mass eigenstates: (need to assume $\widetilde{m}^{2}<0$)

$$
\begin{gathered}
\pi, \widetilde{\pi}=0,-2 \widetilde{m}^{2} ; \eta^{\prime}, \widetilde{\eta}^{\prime}=3 \kappa \phi, 3 \kappa \phi-2 \widetilde{m}^{2} \\
a_{0}, \widetilde{a}_{0}=m^{2}+\kappa \phi+6 \lambda \phi^{2} \pm \widetilde{m}^{2} ; \sigma_{0}, \widetilde{\sigma}=m^{2}-2 \kappa \phi+6 \lambda \phi^{2} \pm \widetilde{m}^{2}
\end{gathered}
$$

All states are mixtures of Φ and ζ. Of course 8 Goldstone bosons. Satisfy generalized 't Hooft relation

$$
m_{\eta^{\prime}}^{2}+m_{\widetilde{\eta}^{\prime}}^{2}-m_{\pi}^{2}-m_{\widetilde{\pi}}^{2}=m_{a_{0}}^{2}+m_{\widetilde{a}_{0}}^{2}-m_{\sigma}^{2}-m_{\widetilde{\sigma}}^{2}
$$

Since every multiplet is doubled, this can easily be satisfied (unlike if just one).
Even with same couplings, all masses are split by the mixing term.
At nonzero T , the thermal masses of the Φ and ζ cannot be equal!

Chiral transition for three flavors, no tetraquark

Cubic terms always generate first order transitions.

$\mathrm{T}=\mathrm{T} \chi$: cannot flatten the potential $=>$
$\mathrm{T} \gg \mathrm{f}_{\pi}: \mathrm{m}^{2}>0$, $\langle\phi\rangle=0 \quad=>$

$$
\mathcal{V}_{\phi}=\frac{m^{2}}{2} \phi^{2}-\kappa \phi^{3}+\lambda \phi^{4}
$$

At T_{χ}, two degenerate minima, with barrier between them. Transition is first order.

With tetraquarks, maybe two chiral transitions

In chiral limit, may have have two chiral
phase transitions. =>
At first, both jump, remain nonzero.
At second, both jump to zero.

$$
\begin{aligned}
m_{\phi}^{2}(T) & =3 T^{2}+m^{2} \\
m_{\zeta}^{2}(T) & =5 T^{2}+m^{2} \\
\widetilde{m}^{2} & =-(100)^{2}
\end{aligned}
$$

<= Also possible to have single chiral phase transition, tetraquark crossover

$$
\widetilde{m}^{2}=-(120)^{2}
$$

"Columbia" phase diagram for light quarks

Lattice: chiral transition crossover in QCD
If two chiral phase transitions for three massless flavors, persist for nonzero range. Implies new phase diagram in the plane of $m_{u}=m_{d}$ versus m_{s} :

Tetraquarks in the plane of T and μ

Diquark fields are identical to the order parameters for color superconductivity. Tetraquark condensate $=$ gauge invariant square of CS condensate. Suggests:

Line for chiral crossover might end, meet line for first order chiral transition at Critical EndPoint (CEP). Massless σ at CEP. Rajagopal, Shuryak \& Stephanov, '99

In effective models, to find the CEP, must include tetraquarks: need the right σ !

Four flavors and hexaquarks

Four flavors, three colors: diquark is 2-index antisymmetric tensor:

So LR tetraquark is same:

$$
\begin{gathered}
\chi_{L}^{(a b) A}=\epsilon^{a b c d} \epsilon^{A B C}\left(q_{L}^{c B}\right)^{T} \mathcal{C}^{-1} q_{L}^{d C} \\
\zeta^{(a b),(c d)}=\left(\chi_{R}^{(a b) A}\right)^{\dagger} \chi_{L}^{(c d) A}
\end{gathered}
$$

Tetraquark couples to usual Φ through cubic, quadratic terms, so what.
Instead, consider triquark field:

$$
\chi_{L}^{a}=\epsilon^{a b c d} \epsilon^{A B C} q_{L}^{b A}\left(q_{L}^{c B}\right)^{T} \mathcal{C}^{-1} q_{L}^{d C}
$$

Triquark is a color singlet, fundamental rep. in flavor. Hence a LR hexaquark field is just like the usual Φ,

$$
\xi^{a b}=\left(\chi_{R}^{a}\right)^{\dagger} \chi_{L}^{b}
$$

and mixes directly with it.

Like color superconductivity, the analysis for general numbers of flavors and colors is not trivial.

Why is the lattice afraid to measure the 0^{+}multiplet?

Admittedly, difficult: need to include disconnected diagrams.
Signal/noise much smaller. Still, possible:
LatKMI collaboration: Yasumichi Aoki et al, 1403.5000
Three colors, eight flavors. Measure the masses of the $\sigma, \pi, \eta: \mathrm{m}_{\sigma} \simeq \mathrm{m}_{\pi} \ll \mathrm{m}_{\eta}$.

