Contribution ID: 18 Type: not specified

KbarNN bound state search at J-PARC

Tuesday, 26 July 2016 12:20 (40 minutes)

The possible existence of strongly-bound \bar{K} nuclear-states has been widely discussed as a consequence of the strongly attractive $\bar{K}N$ interaction in I = 0 channels. Experimentally, however, available information is not sufficient to discriminate between a variety of conflicting interpretations so far. In this situation, we have performed an experimental search for the simplest kaonic nuclear bound state, $\bar{K}NN$, by the in-flight $K^- + {}^3{\rm He}$ reactions at 1 GeV/c (J-PARC E15). The experiment investigates the $\bar{K}NN$ state both in the formation via ${}^3{\rm He}(K^-,n)X$ missing-mass spectroscopy and its decay via invariant-mass spectroscopy using ${}^3{\rm He}(K^-,\Lambda p)n$ channel, respectively. The first physics data-taking was performed at the K1.8BR beam-line in 2013. With this data-set, we have observed a significant bump structure around the K^-pp mass-threshold in the Λp invariant-mass spectrum in the exclusive ${}^3{\rm He}(K^-,\Lambda p)n$ analysis [PTEP(2016)051D01]. We will discuss the possible existence of the $\bar{K}NN$ states by combining the production- and the decay-channel analyses. In addition, we will present the latest results of the second data-taking performed in 2015, where much improved data statistics of the ${}^3{\rm He}(K^-,\Lambda p)n$ channel was accumulated.

Presenter: SAKUMA, Fuminori (RIKEN)

Session Classification: Plenary