$Z_c(3900)$: experiment, theory, lattice

Miguel Albaladejo (IFIC, Valencia)

In collaboration with:
P. Fernandez-Soler (Valencia)
F. K. Guo (Beijing)
C. Hidalgo-Duque (Valencia)
J. Nieves (Valencia)
Outline

1. Experiment
2. Theory
3. Lattice
4. Conclusions
Outline

1. Experiment
2. Theory
3. Lattice
4. Conclusions
Charmonium-like sector

- **Recent reviews (2015-2016):**
 - [Olsen, Front. Phys. 10, 121('15)]
 - [Chen et al., Phys. Rept. 639, 1('16)]
 - [Hosaka et al., PTEP 2016, 062C01('16)]

- **All the c\bar{c} states predicted by QM below D\bar{D} threshold have been found**

- **In 2003, \textbf{X(3872)} is discovered**
 - [Belle Collab., PRL, 91, 262001]
 - Very close to D^0\bar{D}^0 threshold.
 - Close to (but lower) \chi_c 1(2^3P_1).

- **Lattice QCD:**
 - [Prelovsek, Leskovec, PRL, 111, 192001]
 - Candidate for X(3872) only if c\bar{c} + D\bar{D}^* components are considered together

(Taken from: [Olsen, Front. Phys. 10, 121('15)])
Experimental information on $Z_c(3885) / Z_c(3900)$

- **$Z_c(3900)$** first seen by BESIII and Belle Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \to Y(4260) \to J/\psi\pi^{+}\pi^-$

 [PRL,110,252001('13)][PRL,110,252002('13)]

- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \to \psi(4160) \to J/\psi\pi^{+}\pi^-$

 [PL,B727,366('13)]

- BESIII analyses $e^+e^- \to Y(4260) \to \bar{D}^*D\pi$, and sees $Z_c(3885)$ in \bar{D}^*D invariant mass spectrum. $J^P = 1^+$ favoured.

 [PRL,112,022001('14)]

- **BESIII** confirms $Z_c(3885)$ in \bar{D}^*D spectrum at different e^+e^- c.m. energies

 [PR,D92,092006('15)]

- If they are the same object, **Ratio**: $\frac{\Gamma(Z_c\to D\bar{D}^*)}{\Gamma(Z_c\to J/\psi\pi)} = 6.2 \pm 2.9$
Experimental information on $Z_c(3885)/Z_c(3900)$

- **$Z_c(3900)$** first seen by BESIII and Belle Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$

 [PRL,110,252001('13)][PRL,110,252002('13)]

- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi\pi^+\pi^-$

 [PL,B727,366('13)]

- BESIII analyses $e^+e^- \rightarrow Y(4260) \rightarrow D^*D\pi$, and sees $Z_c(3885)$ in D^*D invariant mass spectrum. $J^P = 1^+$ favoured.

 [PRL,112,022001('14)]

- BESIII confirms $Z_c(3885)$ in D^*D spectrum at different e^+e^- c.m. energies

 [PR,D92,092006('15)]

- If they are the same object, Ratio: $\frac{\Gamma(Z_c\rightarrow D\bar{D}^*)}{\Gamma(Z_c\rightarrow J/\psi\pi)} = 6.2 \pm 2.9$
Experimental information on $Z_c(3885)/Z_c(3900)$

- $Z_c(3900)$ first seen by BESIII and Belle Collabs. in $J/\psi\pi^\pm$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$
 - [PRL,110,252001(13)][PRL,110,252002(13)]
- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi\pi^+\pi^-$
 - [PL,B727,366(13)]
- BESIII analyses $e^+e^- \rightarrow Y(4260) \rightarrow \bar{D}^*D\pi$, and sees $Z_c(3885)$ in \bar{D}^*D invariant mass spectrum. $J^P = 1^+$ favoured.
 - [PRL,112,022001(14)]
- BESIII confirms $Z_c(3885)$ in \bar{D}^*D spectrum at different e^+e^- c.m. energies
 - [PR,D92,092006(15)]
- If they are the same object, Ratio: $\frac{r(Z_c \rightarrow D\bar{D})}{r(Z_c \rightarrow \bar{D}\pi)} = 6.2 \pm 2.9$
Experimental information on $Z_c(3885) / Z_c(3900)$

- **$Z_c(3900)$** first seen by BESIII and Belle Collabs. in $J/\psi\pi^\pm$ invariant mass spectrum in $e^+e^- \to Y(4260) \to J/\psi\pi^+\pi^-$

 \[\text{[PRL,110,252001'(13)]}[\text{PRL,110,252002'(13)}]\]

- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \to \psi(4160) \to J/\psi\pi^+\pi^-$
 \[\text{[PL,B727,366'(13)]}\]

- BESIII analyses $e^+e^- \to Y(4260) \to \bar{D}^*D\pi$, and sees $Z_c(3885)$ in \bar{D}^*D invariant mass spectrum. $J^P = 1^+$ favoured.
 \[\text{[PRL,112,022001'(14)]}\]

- BESIII confirms $Z_c(3885)$ in \bar{D}^*D spectrum at different e^+e^- c.m. energies
 \[\text{[PR,D92,092006'(15)]}\]

- If they are the same object, Ratio: $\frac{\Gamma(Z_c \to \bar{D}^*D\pi)}{\Gamma(Z_c \to J/\psi\pi^+\pi^-)} = 6.2 \pm 2.9 $
Experimental information on $Z_c(3885)/Z_c(3900)$

- $Z_c(3900)$ first seen by BESIII and Belle Collabs. in $J/\psi\pi^\pm$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$

 [PRL,110,252001('13)][PRL,110,252002('13)]

- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi\pi^+\pi^-$

 [PL,B727,366('13)]

- BESIII analyses $e^+e^- \rightarrow Y(4260) \rightarrow \bar{D}^*D\pi$, and sees $Z_c(3885)$ in \bar{D}^*D invariant mass spectrum. $J^P = 1^+$ favoured.

 [PRL,112,022001('14)]

- BESIII confirms $Z_c(3885)$ in \bar{D}^*D spectrum at different e^+e^- c.m. energies

 [PR,D92,092006('15)]

- If they are the same object, $\text{Ratio}: \frac{\Gamma(Z_c \rightarrow D\bar{D}^*)}{\Gamma(Z_c \rightarrow J/\psi\pi)} = 6.2 \pm 2.9$
“One of the most interesting resonances”: couples strongly to charmonium ($\sim \bar{c}c$) and yet it has charge ($\sim \bar{u}d$). Minimal quark constituent is four $[\bar{c}c\bar{u}d]$.

Many different interpretations have been given (see reviews mentioned before):

- Tetraquark
- $\bar{D}^* D$ molecular state
- Simply a kinematical effect
- Hadrocharmonium
- It has also been searched for in lattice QCD

What is still missing?

A joint study of both reactions in which the Z_c structure has been seen
"One of the most interesting resonances": couples strongly to charmonium ($\sim \bar{c}c$) and yet it has charge ($\sim \bar{u}d$). Minimal quark constituent is four $[\bar{c}c\bar{u}d]$. Many different interpretations have been given (see reviews mentioned before):

- Tetraquark
- \bar{D}^*D molecular state
- Simply a kinematical effect (ruled out)
- Hadrocharmonium
- It has also been searched for in lattice QCD

What is still missing?

A joint study of both reactions in which the Z_c structure has been seen
Coupling \(\bar{D}^* D \) and \(J/\psi \pi \) channels

Coupled channel formalism is needed, because \(Z_c(3900) \):
- is expected to be dynamically generated in \(\bar{D}^* D \) channel (#2),
- but it is also seen in \(J/\psi \pi \) channel (#1).

\[
T = (\mathbb{I} - V \cdot G)^{-1} \cdot V,
\]
\[
V_{ij} = 4 \sqrt{m_{i1} m_{i2}} \sqrt{m_{j1} m_{j2}} e^{-q_i^2/\Lambda_i^2} e^{-q_j^2/\Lambda_j^2} C_{ij},
\]

- \(G(E) \) are loop functions (Regularized with standard gaussian regulator)
- \(J/\psi \pi \rightarrow J/\psi \pi \): known to be tiny, \(C_{11} = 0 \).
- \(\bar{D}^* D \rightarrow J/\psi \pi \): we make the simplest possible assumption, \(C_{12} \equiv \tilde{C} \) (constant)
- \(\bar{D}^* D \rightarrow \bar{D}^* D \): In a momentum expansion (HQSS), simply a constant, \(C_{22} \equiv C_{1Z} \).
- **Problem**: no resonance in the complex plane above threshold with only constant potentials (even with coupled channels).
- We introduce some energy dependence,

\[
C_{22}(E) = C_{1Z} + b(E - m_D - m_{D^*}).
\]
Amplitudes: $Y(4260) \rightarrow (J/\psi \pi^-)\pi^+, (D^*-D^0)\pi^+$

\[
|M_2(s, t)|^2 = \left| \frac{1}{t - m_{D_1}^2} + i_3(s)T_{22}(s) \right|^2 q_\pi^4(s) + |\beta (1 + T_{22}(s)G_{22}(s))|^2
\]

- s (Mandelstam) \bar{D}^*D invariant mass squared
- $i_3(s)$: three meson loop propagator
- \bar{D}^*D rescattering enters through $T_{22}(s)$
- $q_\pi^2(s) = \lambda(M_Y^2, s, m_\pi^2)/(4M_Y^2)$
Amplitudes: \(Y(4260) \rightarrow (J/\psi \pi^-)\pi^+, (D^* - D^0)\pi^+ \)

The decay proceeds mainly through \([T_{12}(s)]\)

\[Y \rightarrow (\bar{D}^* D)\pi \rightarrow (J/\psi \pi)\pi \]

Some direct production included through \(\alpha\)

\(s, t \) (Mandelstam) \(J/\psi \pi^-, J/\psi \pi^+ \)
invariant mass squared

\[
\left| \mathcal{M}_1(s, t) \right|^2 = |\tau(s)|^2 q^4_\pi(s) + |\tau(t)|^2 q^4_\pi(t) + \frac{3 \cos^2 \theta - 1}{4} \left(\tau(s)\tau(t)^* + \tau(s)^* \tau(t) \right) q^2_\pi(s)q^2_\pi(t),
\]

\[
\tau(s) = \sqrt{2} l_3(s) T_{12}(s) + \alpha
\]
Events distributions and Experimental data

- Events distributions N_i:

 $$N_i(s) = K_i (A_i(s) + B_i(s))$$

 $$A_i(s) = \int_{t_i^-}^{t_i^+} dt |\mathcal{M}_i(s, t)|^2$$

 - K_i (unknown) global normalization constants
 - B_i are background functions (parametrized as in the experimental analyses) ($B_2 = 0$)
 - "Branching ratio":

 $$R_{\text{exp}} = \frac{\Gamma (Z_c \to D\bar{D}^*)}{\Gamma (Z_c \to J/\psi\pi)} = 6.2 \pm 2.9$$

 - Theoretically estimated as the (physical) ratio of areas around $Z_c(3900)$ mass

 $$R_{\text{th}} = \frac{\int ds A_2(s)}{\int ds A_1(s)}$$
Results: comparison with experiment(s)

- Four different fits: \(b = \{\text{free}, 0\} \), \(\Lambda_2 = \{0.5, 1.0\} \) GeV
- Only the \(T \)-matrix parameters are shown (not shown: normalization, ...)
- All fits have \(\chi^2 / \text{dof} \approx 1 \) (\(\approx 1.4 \) for \(b = 0 \)), and are within the error band of the best one
- Reproduction of the data is excellent

<table>
<thead>
<tr>
<th>(\Lambda_2) (GeV)</th>
<th>(C_{1Z}) (fm(^2))</th>
<th>(b) (fm(^3))</th>
<th>(\tilde{C}) (fm(^2))</th>
<th>(\chi^2 / \text{dof})</th>
<th>(R_{th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>(-0.19 \pm 0.08 \pm 0.01)</td>
<td>(-2.0 \pm 0.7 \pm 0.4)</td>
<td>0.39 \pm 0.10 \pm 0.02</td>
<td>1.02</td>
<td>6.0 \pm 3.5 \pm 0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>(+0.01 \pm 0.21 \pm 0.03)</td>
<td>(-7.0 \pm 0.4 \pm 1.4)</td>
<td>0.64 \pm 0.16 \pm 0.02</td>
<td>1.09</td>
<td>6.5 \pm 3.6 \pm 0.2</td>
</tr>
<tr>
<td>1.0</td>
<td>(-0.27 \pm 0.08 \pm 0.07)</td>
<td>(0) (fixed)</td>
<td>0.34 \pm 0.14 \pm 0.01</td>
<td>1.31</td>
<td>10.3 \pm 9.0 \pm 1.1</td>
</tr>
<tr>
<td>0.5</td>
<td>(-0.27 \pm 0.16 \pm 0.13)</td>
<td>(0) (fixed)</td>
<td>0.54 \pm 0.16 \pm 0.02</td>
<td>1.36</td>
<td>10.9 \pm 9.0 \pm 2.5</td>
</tr>
</tbody>
</table>
Four different fits: \(b = \{ \text{free}, 0 \} \), \(\Lambda_2 = \{ 0.5, 1.0 \} \text{ GeV}

- Only the \(T \)-matrix parameters are shown (not shown: normalization, ...)
- All fits have \(\chi^2 / \text{dof} \sim 1 \) (\(\sim 1.4 \) for \(b = 0 \)), and are within the error band of the best one
- Reproduction of the data is excellent
Reflection of threshold and $Z_c(3900)$ in $J/\psi \pi^+ \pi^-$ spectrum

When $M_{J/\psi \pi^-} \equiv \sqrt{s} \in (3.40, 3.55)$ GeV

$M_{J/\psi \pi^+} \equiv \sqrt{t}$ can be at $\sqrt{t} = 3.9$ GeV

($D\bar{D}^*$ threshold, $Z_c(3900)$ mass)

This explains the enhancement (reflection)
Results: Spectroscopy

Two different scenarios:

1. \(b \neq 0\) \(Z_c\) is a \(\bar{D}^*D\) resonance very close to threshold

 (Differences with experiments are related to Breit-Wigner parametrizations)

2. \(b = 0\) \(Z_c\) is a virtual state

In both scenarios,

- Data are very well reproduced
- A single structure (not two) \(Z_c(3885)/Z_c(3900)\) is needed
Bound state, resonance, virtual ...

A **virtual state** does not correspond to a real particle. (Wavefunction not localized.)

It produces effects at the threshold similar to those of a bound state or a nearby resonance.

Well known example: NN scattering and the deuteron

Triplet ($^3S_1 - ^3D_1$):
- $a_t \simeq 5$ fm.
- In this wave there is a **bound state**. The deuteron is a well known, really physical particle.

Singlet (1S_0):
- $a_s \simeq -24$ fm.
- In this wave there is a **virtual state**.
Complex plane & poles: First scenario (resonance)

- Pole located at $3894 - 30$ MeV
- Plot: unphysical Riemann sheet connected to the physical one above $D^*\bar{D}$
- Shift of the pole towards higher energies (interference!)
Complex plane & poles: First scenario (resonance)

- Pole located at $3894 - i30$ MeV
- Plot: unphysical Riemann sheet connected to the physical one above $D^* \bar{D}$
- Shift of the pole towards higher energies (interference!)
Outline

1. Experiment
2. Theory
3. Lattice
4. Conclusions
Z_c(3900) on the lattice

- LQCD simulations on Z_c(3900) still scarce:
 - [Prelovsek et al., PR,D91,014504(’15)] \((m_\pi = 266\ \text{MeV})\) “no additional candidate”
 - [Y. Ikeda et al. [HAL QCD], arXiv:1602.03465] \((m_\pi \geq 410\ \text{MeV})\)
 Virtual poles with very low masses and deep in the complex plane.
 [see talk by Y. Ikeda on Wednesday 10:35h]
 - [Y. Chen et al., PR,D89,094506(’14)]
 - [L. Liu et al., PoS LATTICE 2014, 117(’14)]
 - [S. H. Lee et al., arXiv:1411.1389]

- Results are not conclusive (large pion masses, etc...)

- We can predict energy levels in a finite box.
 Cooperation between (unitary) EFTs and LQCD simulations is useful to understand the hadron spectrum.
 [M. Doring, U. G. Meissner, E. Oset and A. Rusetsky, EPJ,A47,139(’11)]

Z_c(3900) on the lattice

- LQCD simulations on Z_c(3900) still scarce:
 - [Prelovsek et al., PR,D91,014504(’15)] \((m_\pi = 266\ \text{MeV})\) “no additional candidate”
 - [Y. Ikeda et al. [HAL QCD], arXiv:1602.03465] \((m_\pi \geq 410\ \text{MeV})\)
 Virtual poles with very low masses and deep in the complex plane.
 [see talk by Y. Ikeda on Wednesday 10:35h]
 - [Y. Chen et al., PR,D89,094506(’14)]
 - [L. Liu et al., PoS LATTICE 2014, 117(’14)]
 - [S. H. Lee et al., arXiv:1411.1389]

- Results are not conclusive (large pion masses, etc...)

- We can predict energy levels in a finite box.
 Cooperation between (unitary) EFTs and LQCD simulations is useful to understand the hadron spectrum.
 [M. Doring, U. G. Meissner, E. Oset and A. Rusetsky, EPJ,A47,139(’11)]
Formalism for finite volume

Periodic boundary conditions: discrete momenta

<table>
<thead>
<tr>
<th>infinite volume</th>
<th>finite volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vec{q}) continuous</td>
<td>(\vec{q} = \frac{2\pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^3)</td>
</tr>
<tr>
<td>[\int_{\mathbb{R}^3} \frac{d^3 q}{(2\pi)^3} \frac{e^{-2(q^2 - k_z^2)/\Lambda^2}}{E - \omega_{D\bar{D}}(q)}]</td>
<td>[\frac{1}{L^3} \sum_{\vec{n} \in \mathbb{Z}^3} \frac{e^{-2(q^2 - k_z^2)/\Lambda^2}}{E - \omega_{D\bar{D}}(q)}]</td>
</tr>
<tr>
<td>(T^{-1}(E) = V^{-1}(E) - G(E))</td>
<td>(\tilde{T}^{-1}(E, L) = V^{-1}(E) - \tilde{G}(E, L))</td>
</tr>
</tbody>
</table>

- \(\omega_{D\bar{D}}(q) = m_D + m_{D^*} + \frac{m_D + m_{D^*}}{2m_D m_{D^*}} q^2 \) (non relativistic)
- Finite volume \(\rightarrow \) box of edge \(L \): it is an infinite square well potential (like QM)
- Energy levels: bound states in the box. Given by:
 \[\tilde{T}^{-1}(E_m(L), L) = 0 \] (Interacting energy levels)
- In particular, if the interaction is zero (\(V(E) = 0 \)), then the energy levels are given by the poles of the \(\tilde{G} \) function:
 \[E_m(L) = \omega_{D\bar{D}} \left(\frac{2\pi}{L} n \right) \] (Free energy levels)
Formalism for finite volume

Periodic boundary conditions: discrete momenta

<table>
<thead>
<tr>
<th>infinite volume</th>
<th>finite volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{q} continuous</td>
<td>$\vec{q} = \frac{2\pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^3$</td>
</tr>
<tr>
<td>$\int_{\mathbb{R}^3(2\pi)^3} \frac{d^3q}{E - \omega_{\bar{D}D^*}(q)} e^{-2(q^2 - k^2)/\Lambda^2}$</td>
<td>$\frac{1}{L^3} \sum_{\vec{n} \in \mathbb{Z}^3} e^{-2(q^2 - k^2)/\Lambda^2}$</td>
</tr>
<tr>
<td>$T^{-1}(E) = V^{-1}(E) - G(E)$</td>
<td>$\tilde{T}^{-1}(E, L) = V^{-1}(E) - \tilde{G}(E, L)$</td>
</tr>
</tbody>
</table>

Energy-momentum dispersion relation on the lattice

[Prelovsek et al., PR,D91,014504('15)]

$$\omega^{\text{the}}_{\bar{D}D^*}(q) = m_D + m_{D^*} + \frac{m_D + m_{D^*}}{2m_D m_{D^*}} q^2$$

$$\omega^{\text{lat}}_{\bar{D}D^*}(q) = m_{D,1} + m_{D^*,1} + \frac{m_{D,2} + m_{D^*,2}}{2m_{D,2} m_{D^*,2}} q^2 - \frac{m_{D,4}^3 + m_{D^*,4}^3}{8m_{D,4}^3 m_{D^*,4}^3} q^4.$$
Results for the discrete energy levels as a function of box size (L)

- **$J/\psi\pi$ channel not essential:**
 - Always a level close to a free $J/\psi\pi$ one.
 - Coupled channels case levels follow single channel case levels (except near the free $J/\psi\pi$ levels).

- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state.

- **Relevant** energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.

- No “additional/extra” energy level.
Results for the discrete energy levels as a function of box size (L)

- $J/\psi \pi$ channel not essential:
 - Always a level close to a free $J/\psi \pi$ one.
 - **Coupled channels** case levels follow **single channel** case levels (except near the free $J/\psi \pi$ levels).

- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state

- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.

- No “additional/extra” energy level.
Results for the discrete energy levels as a function of box size (L)

- $J/\psi\pi$ channel not essential:
 - Always a level close to a free $J/\psi\pi$ one.
 - Coupled channels case levels follow single channel case levels (except near the free $J/\psi\pi$ levels).

- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state

- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.

- No “additional/extra” energy level.
Results for the discrete energy levels as a function of box size \((L) \)

- **\(J/\psi\pi \) channel not essential:**
 - Always a level close to a free \(J/\psi\pi \) one.
 - Coupled channels case levels follow single channel case levels (except near the free \(J/\psi\pi \) levels).

- Level below threshold (attractive interaction) goes to threshold for \(L \to \infty \): no bound state.

- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.

- No "additional/extra" energy level.
Results for the discrete energy levels as a function of box size (L)

- $J/\psi\pi$ channel not essential:
 - Always a level close to a free $J/\psi\pi$ one.
 - **Coupled channels** case levels follow **single channel** case levels (except near the free $J/\psi\pi$ levels).

- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state

- **Relevant** energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.

- No “additional/extra” energy level.
Comparison with LQCD simulations

- Our aim is to compare with an actual LQCD simulation
 [Prelovsek et al., PR,D91,014504('15) [arXiv:1405.7623]]

- Calculations done at $L = 1.98$ fm, $m_\pi = 266$ MeV.

- Three separate regions, all theoretical predictions in good agreement with LQCD

- Except for this point?

 $E_{\text{th}} = 4000^{+24}_{-13}$ MeV
 $E_{\text{lat}} = 4070 \pm 30$ MeV
 $\Delta E = 70 \pm 40$ MeV ($< 2\sigma$ dev)

- Summary: both scenarios (resonance and virtual) agree with LQCD
Our aim is to compare with an actual LQCD simulation

[Prelovsek et al., PR,D91,014504(15) [arXiv:1405.7623]]

Calculations done at $L = 1.98$ fm, $m_\pi = 266$ MeV.

Three separate regions, all theoretical predictions in good agreement with LQCD

Except for this point?

$E_{th} = 4000_{-13}^{+24}$ MeV
$E_{lat} = 4070 \pm 30$ MeV
$\Delta E = 70 \pm 40$ MeV ($< 2\sigma$ dev)

Summary: both scenarios (resonance and virtual) agree with LQCD
Our aim is to compare with an actual LQCD simulation
[Prelovsek et al., PR,D91,014504(15) [arXiv:1405.7623]]

Calculations done at $L = 1.98$ fm, $m_\pi = 266$ MeV.

Three separate regions, all theoretical predictions in good agreement with LQCD

Except for this point?

$$E_{th} = 4000^{+24}_{-13} \text{ MeV}$$
$$E_{lat} = 4070 \pm 30 \text{ MeV}$$
$$\Delta E = 70 \pm 40 \text{ MeV} \ (\lt 2\sigma \text{ dev.})$$

Summary: both scenarios (resonance and virtual) agree with LQCD

- R scenario (left) vs. VS scenario (right)
- Lattice energy levels: center
 - $\Lambda_2 = 0.5$ GeV: (●, ○)
 - $\Lambda_2 = 1.0$ GeV: (●, ○)
Comparison with LQCD simulations

- Our aim is to compare with an actual LQCD simulation
 [Prelovsek et al., PR,D91,014504(’15) [arXiv:1405.7623]]
- Calculations done at $L = 1.98$ fm, $m_\pi = 266$ MeV.
- Three separate regions, all theoretical predictions in good agreement with LQCD
- Except for this point?
 \[E_{th} = 4000^{+24}_{-13} \text{ MeV} \]
 \[E_{lat} = 4070 \pm 30 \text{ MeV} \]
 \[\Delta E = 70 \pm 40 \text{ MeV (} < 2\sigma \text{ dev.)} \]
- Summary: both scenarios (resonance and virtual) agree with LQCD

- R scenario (left) vs. VS scenario (right)
- Lattice energy levels: center
 \[\Lambda_2 = 0.5 \text{ GeV: (○, ○)} \]
 \[\Lambda_2 = 1.0 \text{ GeV: (●, ○)} \]
Comparison with LQCD simulations: what’s next?

Both scenarios (resonance and virtual) agree with both cutoffs ($\Lambda_2 = 0.5$ GeV and 1 GeV). What to do?

One possibility is to study volume dependence (several volumes)

We compare here two predictions:

- Resonance scenario with $\Lambda_2 = 0.5$ GeV (blue bands)
- Virtual scenario with $\Lambda_2 = 1.0$ GeV (orange bands)

Both are indistinguishable around $L \simeq 2$ fm (say $1.9 \text{ fm} < L < 2.2 \text{ fm}$)

But they are clearly different at $L \simeq 2.4$ fm (say $2.3 \text{ fm} < L < 2.5 \text{ fm}$)
Comparison with LQCD simulations: what’s next?

- Both scenarios (resonance and virtual) agree with both cutoffs ($\Lambda^2 = 0.5$ GeV and 1 GeV). What to do?
- One possibility is to study volume dependence (several volumes)
- We compare here two predictions:
 - Resonance scenario with $\Lambda^2 = 0.5$ GeV (blue bands)
 - Virtual scenario with $\Lambda^2 = 1.0$ GeV (orange bands)

- Both are indistinguishable around $L \simeq 2$ fm (say $1.9 \text{ fm} < L < 2.2 \text{ fm}$)
- But they are clearly different at $L \simeq 2.4$ fm (say $2.3 \text{ fm} < L < 2.5 \text{ fm}$)
Conclusions (this work)

- $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for “tetraquark”, or a $D^*\bar{D}$ molecule...

- We have presented the first simultaneous study of the two decays $(Y(4260) \to J/\psi\pi\pi, D^*D\pi)$ in which $Z_c(3900)$ is seen.

- Data are well reproduced in all fits ($\chi^2 \approx 1$).

- Two different scenarios are found:
 1. ($b \neq 0$) $Z_c(3900)$ is a $D^*\bar{D}$ resonance
 2. ($b = 0$) $Z_c(3900)$ is a virtual state

- In any case, a single structure for $Z_c(3885)/Z_c(3900)$ is needed.

- Improved data on $J/\psi\pi$ invariant mass spectrum are necessary.

- We have used our T-matrix to compute energy levels in a finite volume.

- Good agreement is found for both scenarios (resonance and virtual state) with the energy levels reported in a LQCD simulation [Prelovsek et al., PR, D91, 014504(15)].

- To discriminate both scenarios, we suggest to perform LQCD simulations at several different volumes.
Conclusions (this work)

- $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for “tetraquark”, or a $D^*\bar{D}$ molecule...

- We have presented the first simultaneous study of the two decays $(Y(4260) \to J/\psi\pi\pi, \bar{D}^*D\pi)$ in which $Z_c(3900)$ is seen
- Data are well reproduced in all fits ($\chi^2 \approx 1$)
- Two different scenarios are found:
 1. $(b \neq 0)$ $Z_c(3900)$ is a \bar{D}^*D resonance
 2. $(b = 0)$ $Z_c(3900)$ is a virtual state
- In any case, a single structure for $Z_c(3885)/Z_c(3900)$ is needed.
- Improved data on $J/\psi\pi$ invariant mass spectrum are necessary

- We have used our T-matrix to compute energy levels in a finite volume
- Good agreement is found for both scenarios (resonance and virtual state) with the energy levels reported in a LQCD simulation [Prelovsek et al., PR,D91,014504(15)]
- To discriminate both scenarios, we suggest to perform LQCD simulations at several different volumes
Conclusions (this work)

- $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for “tetraquark”, or a $D^*\bar{D}$ molecule...

- We have presented the first simultaneous study of the two decays ($Y(4260) \rightarrow J/\psi \pi \pi, \bar{D}^*D\pi$) in which $Z_c(3900)$ is seen
- Data are well reproduced in all fits ($\hat{\chi}^2 \simeq 1$)
- Two different scenarios are found:
 1. ($b \neq 0$) $Z_c(3900)$ is a \bar{D}^*D resonance
 2. ($b = 0$) $Z_c(3900)$ is a virtual state
- In any case, a single structure for $Z_c(3885)/Z_c(3900)$ is needed.
- Improved data on $J/\psi\pi$ invariant mass spectrum are necessary

- We have used our T-matrix to compute energy levels in a finite volume
- Good agreement is found for both scenarios (resonance and virtual state) with the energy levels reported in a LQCD simulation [Prelovsek et al., PR,D91,014504('15)]
- To discriminate both scenarios, we suggest to perform LQCD simulations at several different volumes
Conclusions (general)

- Charmonium spectrum, well known below $D\bar{D}$ threshold.
- Since 2003, the charmonium(-like) spectrum increases continuously (~ 1 state/year), but we do not fully understand: there are $c\bar{c}$, there are meson-meson molecules, there are tetraquarks, and many others.
- They must be mixing, specially around thresholds.
- Lattice still must go down to physical masses.
- We shall all be studying Heavy Quark Physics...
Conclusions (general)

- Charmonium spectrum, well known below $D\bar{D}$ threshold.
- Since 2003, the charmonium(-like) spectrum increases continuously (~ 1 state/year), but we do not fully understand: there are $c\bar{c}$, there are meson-meson molecules, there are tetraquarks, and many others.
- They must be mixing, specially around thresholds.
- Lattice still must go down to physical masses.
- We shall all be studying Heavy Quark Physics...
$Z_c(3900)$: experiment, theory, lattice

Miguel Albaladejo (IFIC, Valencia)

Thanks for your attention