$Z_c(3900)$: experiment, theory, lattice

[arXiv:1512.03638, Phys. Lett. B 755, 337 (2016)]

[arXiv:1606.03008, Eur. Phys. J. C (under review)]

Miguel Albaladejo (IFIC, Valencia)

In collaboration with: P. Fernandez-Soler (Valencia) F. K. Guo (Beijing) C. Hidalgo-Duque (Valencia) J. Nieves (Valencia)

Outline

1 Experiment

2 Theory

3 Lattice

Outline

1 Experiment

2 Theory

3 Lattice

Experiment	Theory	Lattice	Conclusions
000			
Charmonium-like sector			

Charmonium-like sector

Lattice OCD:

together

Recent reviews (2015-2016):

Olsen, Front, Phys. 10, 121('15)]

• All the $c\bar{c}$ states predicted by OM

In 2003, X(3872) is discovered

[Prelovsek, Leskovec, PRL,111,192001]

• Very close to $D^0 \overline{D}^0$ threshold.

• Close to (but lower) $\chi_{c1}(2^3P_1)$.

candidate for X(3872) only if $c\bar{c}$ +

DD
^{*} components are considered

[Belle Collab., PRL, 91, 262001]

[Chen et al., Phys. Rept. 639, 1('16)]
 [Hosaka et al., PTEP 2016, 062C01('16)]

below $D\overline{D}$ threshold have been found

xperiment	Theory 000000000	Lattice	Conclusions
xperimental information on $Z_c(3885)/Z_c(390)$))		

- **Z**_c(3900) first seen by **BESIII** and **Belle** Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$ [PRL,110,252001(13)][PRL,110,252002(13)]
- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi\pi^+\pi^-$ [PL,B727,366(13)]
- BESIII analyses e⁺e⁻ → Y(4260) → D⁺Dπ, and sees Z_c(3885) in D⁺D invariant mass spectrum J⁰ = 1⁺ favoured. [PRL,112,022001(14)]
- BESIII confirms Z_c(3885) in D⁺D spectrum at different e⁺e⁻ c.m. energies [PR,D92,092006('15)]
- If they are the same object, **Ratio:** $\frac{\Gamma(Z_c \rightarrow DD^*)}{\Gamma(Z_c \rightarrow J/\psi\pi)} = 6.2 \pm 2.9$

int	Theory	Lattice	Conclusions	
tel: - fermetice				

Experim

Experimental information on $Z_c(3885)/Z_c(3900)$

- **Z_c(3900)** first seen by **BESIII** and **Belle** Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$ [PRL,110,252001(13)][PRL,110,252002(13)]
- Later on, **CLEO-c** data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi \pi^+\pi^-$ [PL,B727,366(13)]
- BESIII analyses e⁺e[−] → Y(4260) → D^{*}Dπ, and sees Z_t(3885) in D^{*}D invariant mass spectrum J⁰ = 1⁺ favoured.
 - [PRL,112,022001('14)]
- BESIII confirms Z_c(3885) in D⁺D spectrum at different e⁺e⁻ c.m. energies [PR,D92,092006(15)]
- If they are the same object, **Ratio:** $\frac{\Gamma(Z_c \rightarrow DD^*)}{\Gamma(Z_c \rightarrow U/\psi\pi)} = 6.2 \pm 2.9$

Experimental information on $Z_c(3885)/Z_c(3900)$

- **Z_c(3900)** first seen by **BESIII** and **Belle** Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$ [PRL,110,252001(13)][PRL,110,252002(13)]
- Later on, CLEO-c data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi \pi^+\pi^-$ [PL,B727,366(13)]
- **BESIII** analyses $e^+e^- \rightarrow Y(4260) \rightarrow \bar{D}^*D\pi$, and sees $Z_c(3885)$ in \bar{D}^*D invariant mass spectrum. $J^{\rho} = 1^+$ favoured. [PRL,112,022001(14)]
- BESIII confirms Z_c(3885) in D⁺D spectrum at different e⁺e⁺ c.m. energies [PR,D92,092006(15)]

M. Albaladejo (IFIC, Valencia): Z_C (3900): experiment, theory, lattice

Experimental information on $Z_c(3885)/Z_c(3900)$

- **Z_c(3900)** first seen by **BESIII** and **Belle** Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$ [PRL,110,252001(13)][PRL,110,252002(13)]
- Later on, **CLEO-c** data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi \pi^+\pi^-$ [PL,B727,366(13)]
- **BESIII** analyses $e^+e^- \rightarrow Y(4260) \rightarrow \overline{D}^*D\pi$, and sees $Z_c(3885)$ in \overline{D}^*D invariant mass spectrum. $J^P = 1^+$ favoured. [PRL,112,022001(14)]
- **BESIII** confirms $Z_c(3885)$ in \overline{D}^*D spectrum at different e^+e^- c.m. energies [PR,D92,092006(15)]

M. Albaladejo (IFIC, Valencia): Z_C (3900): experiment, theory, lattice

MENU 2016. Kyoto, Jul. 25-30, 2016

Experimental information on $Z_c(3885)/Z_c(3900)$

- **Z_c(3900)** first seen by **BESIII** and **Belle** Collabs. in $J/\psi\pi^{\pm}$ invariant mass spectrum in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$ [PRL,110,252001(13)][PRL,110,252002(13)]
- Later on, **CLEO-c** data confirmed $Z_c(3900)$ in $e^+e^- \rightarrow \psi(4160) \rightarrow J/\psi \pi^+\pi^-$ [PL,B727,366(13)]
- **BESIII** analyses $e^+e^- \rightarrow Y(4260) \rightarrow \overline{D}^*D\pi$, and sees $Z_c(3885)$ in \overline{D}^*D invariant mass spectrum. $J^P = 1^+$ favoured. [PRL,112,022001(14)]
- **BESIII** confirms $Z_c(3885)$ in \overline{D}^*D spectrum at different e^+e^- c.m. energies [PR,D92,092006(15)]
- If they are the same object, Ratio: $\frac{\Gamma(Z_c \rightarrow D\bar{D}^*)}{\Gamma(Z_c \rightarrow J/\psi\pi)} = 6.2 \pm 2.9$

M. Albaladejo (IFIC, Valencia): Z_C (3900): experiment, theory, lattice

MENU 2016. Kyoto, Jul. 25-30, 2016

Experiment	Theory	Lattice	Conclusions
000			
Introduction: theoretical speculation			

Introduction: theoretical speculation

- "One of the most interesting resonances": couples strongly to charmonium $(\sim \bar{c}c)$ and yet it has charge $(\sim \bar{u}d)$. Minimal quark constituent is four $[\bar{c}c\bar{u}d]$.
- Many different interpretations have been given (see reviews mentioned before):
 - Tetraquark
 - D

 ^{*}D molecular state
 - Simply a kinematical effect
 - Hadrocharmonium
 - It has also been searched for in lattice QCD

What is still missing?

A joint study of both reactions in which the Z_c structure has been seen

Experiment	Theory	Lattice	Conclusions
Introduction: theoretical speculation			

Introduction: theoretical speculation

- "One of the most interesting resonances": couples strongly to charmonium $(\sim \bar{c}c)$ and yet it has charge $(\sim \bar{u}d)$. Minimal quark constituent is four $[\bar{c}c\bar{u}d]$.
- Many different interpretations have been given (see reviews mentioned before):
 - Tetraquark
 - D

 ^{*}D molecular state
 - Simply a kinematical effect (ruled out)
 - Hadrocharmonium
 - It has also been searched for in lattice QCD

What is still missing?

A joint study of both reactions in which the Z_c structure has been seen

Outline

Experiment

2 Theory

3 Lattice

4 Conclusions

Experiment	Theory	Lattice	Conclusions
	0000000		
Coupling $\bar{D}^* D$ and $J / \frac{1}{2}\pi$ channels			

Coupling $ar{D}^*D$ and $J/\psi\pi$ channels

Coupled channel formalism is needed, because $Z_c(3900)$:

- is expected to be dynamically generated in \overline{D}^*D channel (#2),
- but it is also seen in $J/\psi\pi$ channel (#1).

$$T = (\mathbb{I} - V \cdot G)^{-1} \cdot V ,$$

 $V_{ij} = 4\sqrt{m_{i1}m_{i2}}\sqrt{m_{j1}m_{j2}} e^{-q_i^2/\Lambda_i^2} e^{-q_j^2/\Lambda^2} C_{ij} ,$

- G(E) are loop functions (Regularized with standard gaussian regulator)
- $J/\psi\pi \rightarrow J/\psi\pi$: known to be tiny, $C_{11} = 0$.
- $\overline{D}^*D \to J/\psi\pi$: we make the simplest possible assumption, $C_{12} \equiv \widetilde{C}$ (constant)
- $\bar{D}^*D \rightarrow \bar{D}^*D$: In a momentum expansion (HQSS), simply a constant, $C_{22} \equiv C_{12}$.
- **Problem:** no resonance in the complex plane above threshold with only constant potentials (even with coupled channels).
- We introduce some energy dependence,

$$C_{22}(E) = C_{1Z} + b (E - m_D - m_{D^*}).$$

Experiment	Theory	Lattice	Conclusions
	00000000		
Amplitudes: $Y(4260) \rightarrow (J/\psi_7)$	$\pi^{-})\pi^{+}(p^{*}-p^{0})\pi^{+}$		

Amplitudes: Y(4260) ightarrow (J/ $\psi\pi^-$) π^+ , (D* $^-$ D 0) π^+

- s (Mandelstam) \overline{D}^*D invariant mass squared
- *I*₃(*s*): three meson loop propagator
- \overline{D}^*D rescattering enters through $T_{22}(s)$

•
$$q_{\pi}^{2}(s) = \lambda(M_{Y}^{2}, s, m_{\pi}^{2})/(4M_{Y}^{2})$$

Experiment	Theory	Lattice	Conclusions
	00000000		
Amplitudes: $Y(4260) \rightarrow (J/\psi)$	$(\pi^{-})\pi^{+}, (D^{*}-D^{0})\pi^{+}$		

Amplitudes: $Y(4260) ightarrow (J/\psi\pi^-)\pi^+, (D^{*-}D^0)\pi^+$

- The decay proceeds mainly through $[T_{12}(s)]$ $Y \rightarrow (\bar{D}^*D)\pi \rightarrow (J/\psi\pi)\pi$
- Some direct production included through α
- *s*, *t* (Mandelstam) $J/\psi\pi^-$, $J/\psi\pi^+$ invariant mass squared

$$\begin{aligned} \left|\overline{\mathcal{M}_{1}}(s,t)\right|^{2} &= \left|\tau(s)\right|^{2} q_{\pi}^{4}(s) + \left|\tau(t)\right|^{2} q_{\pi}^{4}(t) + \frac{3\cos^{2}\theta - 1}{4} \left(\tau(s)\tau(t)^{*} + \tau(s)^{*}\tau(t)\right) q_{\pi}^{2}(s) q_{\pi}^{2}(t) ,\\ \tau(s) &= \sqrt{2} l_{3}(s) T_{12}(s) + \alpha \end{aligned}$$

Experiment	Theory	Lattice	Conclusions
	00000000		
Events distributions and Experimental data			

Events distributions and Experimental data

Events distributions N_i:

$$\mathcal{N}_i(s) = \mathcal{K}_i \left(\mathcal{A}_i(s) + \mathcal{B}_i(s) \right)$$

 $\mathcal{A}_i(s) = \int_{t_{i,-}}^{t_{i,+}} dt \left| \overline{\mathcal{M}_i}(s,t) \right|^2$

- *K_i* (unknown) global normalization constants
- *B_i* are background functions (parametrized as in the experimental analyses) (*B*₂ = 0)
- Branching ratio":

$$R_{\exp} = \frac{\Gamma \left(Z_c \to D \bar{D}^* \right)}{\Gamma \left(Z_c \to J/\psi \pi \right)} = 6.2 \pm 2.9$$

 Theoretically estimated as the (physical) ratio of areas around Z_c(3900) mass

$$R_{\rm th} = \frac{\int ds \mathcal{A}_2(s)}{\int ds \mathcal{A}_1(s)}$$

MENU 2016. Kyoto, Jul. 25-30, 2016

Experiment	Theory	Lattice	Conclusions
	00000000		
Results: comparison with experiment(s)			

Results: comparison with experiment(s)

Λ_2 (GeV)	C_{1Z} (fm ²)	<i>b</i> (fm ³)	\tilde{C} (fm ²)	$\chi^2/{ m dof}$	R _{th}
1.0	$-0.19 \pm 0.08 \pm 0.01$	$-2.0 \pm 0.7 \pm 0.4$	$0.39 \pm 0.10 \pm 0.02$	1.02	$6.0\pm3.5\pm0.5$
0.5	$+0.01\pm 0.21\pm 0.03$	$-7.0 \pm 0.4 \pm 1.4$	$0.64 \pm 0.16 \pm 0.02$	1.09	$6.5\pm3.6\pm0.2$
1.0	$-0.27 \pm 0.08 \pm 0.07$	0 (fixed)	$0.34 \pm 0.14 \pm 0.01$	1.31	$10.3\pm9.0\pm1.1$
0.5	$-0.27 \pm 0.16 \pm 0.13$	0 (fixed)	$0.54 \pm 0.16 \pm 0.02$	1.36	$10.9\pm9.0\pm2.5$

- Four different fits: $b = \{ free, 0 \}, \Lambda_2 = \{ 0.5, 1.0 \}$ GeV
- Only the T-matrix parameters are shown (not shown: normalization, ...)
- All fits have $\hat{\chi}^2 \simeq 1$ ($\simeq 1.4$ for b = 0), and are within the error band of the best one
- Reproduction of the data is excellent

Experiment	Theory	Lattice	Conclusions
	0000000		
Posults: comparison with experiment(s)			

Results: comparison with experiment(s)

Λ_2 (GeV)	C_{1Z} (fm ²)	<i>b</i> (fm ³)	\tilde{C} (fm ²)	χ^2/dof	R _{th}
1.0	$-0.19 \pm 0.08 \pm 0.01$	$-2.0 \pm 0.7 \pm 0.4$	$0.39 \pm 0.10 \pm 0.02$	1.02	$6.0\pm3.5\pm0.5$
0.5	$+0.01\pm 0.21\pm 0.03$	$-7.0 \pm 0.4 \pm 1.4$	$0.64 \pm 0.16 \pm 0.02$	1.09	$6.5\pm3.6\pm0.2$
1.0	$-0.27 \pm 0.08 \pm 0.07$	0 (fixed)	$0.34 \pm 0.14 \pm 0.01$	1.31	$10.3\pm9.0\pm1.1$
0.5	$-0.27 \pm 0.16 \pm 0.13$	0 (fixed)	$0.54 \pm 0.16 \pm 0.02$	1.36	$10.9\pm9.0\pm2.5$

- Four different fits: $b = \{ free, 0 \}, \Lambda_2 = \{ 0.5, 1.0 \}$ GeV
- Only the T-matrix parameters are shown (not shown: normalization, ...)
- All fits have $\hat{\chi}^2 \simeq 1$ ($\simeq 1.4$ for b = 0), and are within the error band of the best one
- Reproduction of the data is excellent

Experiment	Theory	Lattice	Conclusions
	000000000		
Posulte: comparison with experiment/c)			

Reflection of threshold and $Z_c(3900)$ in $J/\psi \pi^+\pi^-$ spectrum

When
$$M_{J\psi\pi^-} \equiv \sqrt{s} \in (3.40, 3.55)$$
 GeV
 $\downarrow \downarrow$
 $M_{J\psi\pi^+} \equiv \sqrt{t}$ can be at $\sqrt{t} = 3.9$ GeV
($D\overline{D}^*$ threshold, $Z_c(3900)$ mass)

This explains the enhancement (reflection)

Experiment	Theory	Lattice 00000	Conclusions
Results: Spectroscopy			

Results: Spectroscopy

M_{Z_c} (MeV)	$\Gamma_{Z_c}/2$ (MeV)	Ref.	Final state
3899 ± 6	23 ± 11	▲(BESIII)	$J/\psi \pi$
3895 ± 8	32 ± 18	■(Belle)	$J/\psi \pi$
3886 ± 5	19 ± 5	●(CLEO-c)	$J/\psi \pi$
3884 ± 5	12 ± 6	▲(BESIII)	\bar{D}^*D
3882 ± 3	13 ± 5	▲(BESIII)	\bar{D}^*D
$3894\pm 6\pm 1$	$30\pm12\pm6$	$\Box(\Lambda = 1.0 \text{ GeV})$	both
$3886\pm4\pm1$	$22\pm 6\pm 4$	$\Box(\Lambda = 0.5 \text{ GeV})$	both
$3831 \pm 26^{+\ 7}_{-28}$	virtual state	($\Lambda = 1.0$ GeV)	both
$3844 \pm 19^{+12}_{-21}$	virtual state	($\Lambda = 0.5 \text{ GeV}$)	both

Two different scenarios:

(b ≠ 0) Z_c is a D
^{*}D resonance very close to threshold
 (Differences with experiments are related to Breit-Wigner parametrizations)

2 $(b = 0) Z_c$ is a **virtual state**

In both scenarios,

- Data are very well reproduced
- A single structure (not two) *Z_c*(3885)/*Z_c*(3900) is needed

Experiment	Theory	Lattice	Conclusions
	000000000		
Results: Spectroscopy			

Bound state, resonance, virtual ...

Well known example: *NN* scattering and the deuteron

- Triplet $({}^{3}S_{1} {}^{3}D_{1})$:
 - $a_t \simeq 5$ fm.
 - In this wave there is a bound state. The deuteron is a well known, really physical particle.

Singlet $({}^{1}S_{0})$:

- $a_s \simeq -24$ fm.
- In this wave there is a virtual state.

- A virtual state does not correspond to a real particle. (Wavefunction not localized.)
- It produces effects at the threshold similar to those of a bound state or a nearby resonance.

Experiment	Theory	Lattice	Conclusions
	00000000		
Results: Spectroscopy			

Complex plane & poles: First scenario (resonance)

Pole located at 3894 – i30 MeV

- Plot: unphysical Riemann sheet connected to the physical one above $D^*\bar{D}$
- Shift of the pole towards higher energies (interference!)

Experiment	Lattice	Conclusions
Results: Spectroscopy		

Complex plane & poles: First scenario (resonance)

Pole located at 3894 – i30 MeV

- Plot: unphysical Riemann sheet connected to the physical one above $D^*\bar{D}$
- Shift of the pole towards higher energies (interference!)

Outline

Experiment

2 Theory

Experiment	Theory	Lattice	Conclusions
		0000	
$Z_c(3900)$ on the lattice			

$Z_c(3900)$ on the lattice

- LQCD simulations on $Z_c(3900)$ still scarce:
 - [Prelovsek *et al.*, PR,D91,014504('15)] ($m_{\pi} = 266$ MeV) "no additional candidate"
 - [Y. Ikeda et al. [HAL QCD], arXiv:1602.03465]
 - $(m_\pi \ge 410 \text{ MeV})$

Virtual poles with very low masses and deep in the complex plane.

[see talk by Y. Ikeda on Wednesday 10:35h]

- [Y. Chen et al., PR,D89,094506('14)]
- [L. Liu et al., PoS LATTICE 2014, 117('14)]
- [S. H. Lee et al., arXiv:1411.1389]
- Results are not conclusive (large pion masses, etc...)
- We can predict energy levels in a finite box.
 Cooperation between (unitary) EFTs and LQCD simulations is useful to understand the hadron spectrum.

[M. Doring, U. G. Meissner, E. Oset and A. Rusetsky, EPJ,A47,139('11)]

[M.A., C. Hidalgo-Duque, J. Nieves, E. Oset, PR,D88,014510('13)]

Experiment	Theory	Lattice	Conclusions
		0000	
Formalism for finite volume			

Formalism for finite volume [M.A., P. Fernández-Soler, J. Nieves, arXiv:1606.03008]

Periodic boundary conditions: discrete momenta		
infinite volume	finite volume	
$ \frac{\vec{q} \text{ continuous}}{\int_{\mathbb{R}^3} (2\pi)^3} \frac{e^{-2(q^2 - k_2^2)/\Lambda^2}}{E - \omega_D \bar{D}^*(q)} \\ T^{-1}(E) = V^{-1}(E) - G(E) $	$\vec{q} = \frac{2\pi}{L}\vec{n}, \vec{n} \in \mathbb{Z}^{3}$ $\frac{1}{L^{3}} \sum_{\vec{n} \in \mathbb{Z}^{3}} \frac{e^{-2(q^{2}-k_{2}^{2})/\Lambda^{2}}}{E - \omega_{D\bar{D}^{*}}(q)}$ $\vec{T}^{-1}(E,L) = V^{-1}(E) - \tilde{G}(E,L)$	

•
$$\omega_{D\bar{D}^*}^{\text{the}}(q) = m_D + m_{D^*} + \frac{m_D + m_{D^*}}{2m_D m_{D^*}} q^2$$
 (non relativistic)

- Finite volume \rightarrow box of edge L: it is an infinite square well potential (like QM)
- Energy levels: bound states in the box. Given by:

 $\tilde{T}^{-1}(E_m(L),L) = 0$ (Interacting energy levels)

• In particular, if the interaction is zero (V(E) = 0), then the energy levels are given by the poles of the \tilde{G} function:

$$E_m(L) = \omega_{D\bar{D}^*}(2\pi n/L)$$
 (Free energy levels)

M. Albaladejo (IFIC, Valencia): Z_C (3900): experiment, theory, lattice

MENU 2016. Kyoto, Jul. 25-30, 2016

Formalism for finite volume			
		0000	
Experiment	Theory	Lattice	Conclusions

Formalism for finite volume [M.A., P. Fernández-Soler, J. Nieves, arXiv:1606.03008]

Periodic boundary conditions: discrete momenta		
infinite volume	finite volume	
\vec{q} continuous	$\vec{q} = \frac{2\pi}{L}\vec{n}, \vec{n} \in \mathbb{Z}^3$	
$\int d^3 q e^{-2(q^2-k_2^2)/\Lambda^2}$	$1 \sum_{k=1}^{L} e^{-2(q^2-k_2^2)/\Lambda^2}$	
$\int_{\mathbb{R}^3} \overline{(2\pi)^3} \overline{E - \omega_{D\bar{D}^*}(q)}$	$\overline{L^3} \sum_{\vec{p} \in \mathbb{Z}^3} \overline{E - \omega_{D\bar{D}^*}(q)}$	
$T^{-1}(E) = V^{-1}(E) - G(E)$	$\tilde{T}^{-1}(E,L) = V^{-1}(E) - \tilde{G}(E,L)$	

Energy-momentum dispersion relation on the lattice [Prelovsek *et al.*, PR,D91,014504('15)]

$$\omega_{D\bar{D}^*}^{\text{the}}(q) = m_D + m_{D^*} + rac{m_D + m_{D^*}}{2m_D m_{D^*}}q^2$$

 $\omega_{D\bar{D}^*}^{\text{lat}}(q) = m_{D,1} + m_{D^*,1} + rac{m_{D,2} + m_{D^*,2}}{2m_{D,2}m_{D^*,2}}q^2 - rac{m_{D,4}^3 + m_{D^*,4}^3}{8m_{D,4}^3}m_{D^*,4}^3 q^4 \;.$

Experiment	Theory 00000000	Lattice	Conclusions
Results			

- Always a level close to a free $J/\psi\pi$ one.
- Coupled channels case levels follow single channel case levels (except near the free
- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state
- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.
- No "additional/extra" energy level.

Experiment	Theory 00000000	Lattice	Conclusions
Results			

- $J/\psi\pi$ channel not essential:
 - Always a level close to a free $J/\psi\pi$ one.
 - Coupled channels case levels follow single channel case levels (except near the free $J/\psi\pi$ levels).
- Level below threshold (attractive interaction) goes to threshold for L→∞: no bound state
- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.
- No "additional/extra" energy level.

Experiment	Theory 00000000	Lattice	Conclusions
Results			

- $J/\psi\pi$ channel not essential:
 - Always a level close to a free $J/\psi\pi$ one.
 - Coupled channels case levels follow single channel case levels (except near the free $J/\psi\pi$ levels).
- Level below threshold (attractive interaction) goes to threshold for L→∞: no bound state
- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.
- No "additional/extra" energy level.

Experiment	Theory 00000000	Lattice	Conclusions
Results			

- $J/\psi\pi$ channel not essential:
 - Always a level close to a free $J/\psi\pi$ one.
 - Coupled channels case levels follow single channel case levels (except near the free $J/\psi\pi$ levels).
- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state
- Relevant energy level: the one above threshold. Shift w.r.t. free levels is larger
 - for the resonance case
- No "additional/extra" energy level.

Experiment	Theory 00000000	Lattice	Conclusions
Results			

- $J/\psi\pi$ channel not essential:
 - Always a level close to a free $J/\psi\pi$ one.
 - Coupled channels case levels follow single channel case levels (except near the free $J/\psi\pi$ levels).
- Level below threshold (attractive interaction) goes to threshold for $L \to \infty$: no bound state
- **Relevant** energy level: the one above threshold. Shift w.r.t. free levels is larger for the resonance case.
- No "additional/extra" energy level.

Experiment	Theory	Lattice	Conclusions
		00000	
Comparison with LOCD simulations			

- R scenario (left) vs. VS scenario (right)
- Lattice energy levels: center
- Λ₂ = 0.5 GeV: (○, ○)
- $\Lambda_2 = 1.0 \text{ GeV:} (\bullet, \bigcirc)$

Our aim is to compare with an actual LQCD simulation

[Prelovsek et al., PR,D91,014504('15) [arXiv:1405.7623]]

- Calculations done at L = 1.98 fm, $m_{\pi} = 266$ MeV.
 - Three separate regions, all theoretical predictions in good agreement with LQCE
- Except for this point?

 $E_{
m th} = 4000^{+24}_{-13}~
m MeV$

 $_{
m it}=4070\pm30~{
m MeV}$

 $\Delta E = 70 \pm$ 40 MeV ($< 2\sigma$ dev.)

Summary: both scenarios (resonance and virtual) agree with LQCD

Experiment		
Comparison with LOCD simulations		

- R scenario (left) vs. VS scenario (right)
- Lattice energy levels: center
- Λ₂ = 0.5 GeV: (○, ○)
- $\Lambda_2 = 1.0 \text{ GeV:} (\bullet, \bigcirc)$

Our aim is to compare with an actual LQCD simulation

[Prelovsek et al., PR,D91,014504('15) [arXiv:1405.7623]]

- Calculations done at L = 1.98 fm, $m_{\pi} = 266$ MeV.
- Three separate regions, all theoretical predictions in good agreement with LQCD

 $E_{0} = 4000^{+24}_{-15}$ MeV $E_{00} = 4070 \pm 30$ MeV $\Delta E = 70 \pm 40$ MeV (< 2 σ dev.)

 Summary: both scenarios (resonance and virtual) agree with LOCD

Experiment	Theory	Lattice	Conclusions
Comparison with LOCD simulations		00000	

- R scenario (left) vs. VS scenario (right)
- Lattice energy levels: center
- Λ₂ = 0.5 GeV: (○, ○)
- $\Lambda_2 = 1.0 \text{ GeV:} (\bullet, \bigcirc)$

• Our aim is to compare with an actual LQCD simulation

[Prelovsek et al., PR,D91,014504('15) [arXiv:1405.7623]]

- Calculations done at L = 1.98 fm, $m_{\pi} = 266$ MeV.
- Three separate regions, all theoretical predictions in good agreement with LQCD
- Except for this point?

$$E_{\rm th} = 4000^{+24}_{-13} \,{\rm MeV}$$

 $E_{\rm lat} = 4070 \pm 30 \,{\rm MeV}$
 $\Delta E = 70 \pm 40 \,{\rm MeV} \,(< 2\sigma \,{\rm dev.})$

Summary: both scenarios (res

		00000	
Experiment	Theory	Lattice	Conclusions

- R scenario (left) vs. VS scenario (right)
- Lattice energy levels: center
- Λ₂ = 0.5 GeV: (○, ○)

•
$$\Lambda_2 = 1.0 \text{ GeV:} (\bullet, \bigcirc)$$

• Our aim is to compare with an actual LQCD simulation

[Prelovsek et al., PR,D91,014504('15) [arXiv:1405.7623]]

- Calculations done at L = 1.98 fm, $m_{\pi} = 266$ MeV.
- Three separate regions, all theoretical predictions in good agreement with LQCD
- Except for this point?

 $E_{\rm th} = 4000^{+24}_{-13} \, {\rm MeV}$ $E_{\rm lat} = 4070 \pm 30 \, {\rm MeV}$

- $\Delta E = 70 \pm 40$ MeV ($< 2\sigma$ dev.)
- Summary: both scenarios (resonance and virtual) agree with LQCD

Experiment	Theory	Lattice	Conclusions
		00000	
Comparison with LOCD simulations: what'	c novt?		

Comparison with LQCD simulations: what's next?

- Both scenarios (resonance and virtual) agree with both cutoffs ($\Lambda_2=0.5~\text{GeV}$ and 1 GeV). What to do?
- One possibility is to study volume dependence (several volumes)
- We compare here two predictions:
 - Resonance scenario with $\Lambda_2=0.5$ GeV (blue bands)
 - Virtual scenario with $\Lambda_2=1.0$ GeV (orange bands)

- Both are indistinguishable around $L \simeq 2$ fm (say 1.9 fm < L < 2.2 fm)
- But they are clearly different at $L \simeq 2.4$ fm (say 2.3 fm < L < 2.5 fm)

Experiment	Theory	Lattice	Conclusions
		00000	
Comparison with LOCD simulations: what'	c novt?		

Comparison with LQCD simulations: what's next?

- Both scenarios (resonance and virtual) agree with both cutoffs ($\Lambda_2=0.5~\text{GeV}$ and 1 GeV). What to do?
- One possibility is to study volume dependence (several volumes)
- We compare here two predictions:
 - Resonance scenario with $\Lambda_2=0.5$ GeV (blue bands)
 - Virtual scenario with $\Lambda_2=1.0$ GeV (orange bands)

- Both are indistinguishable around $L \simeq 2$ fm (say 1.9 fm < L < 2.2 fm)
- But they are clearly different at $L \simeq 2.4$ fm (say 2.3 fm < L < 2.5 fm)

Outline

Experiment

2 Theory

3 Lattice

Experiment	Theory	Lattice	Conclusions
	00000000	00000	• O
Conclusions (this work)			

Conclusions (this work)

- $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for "tetraquark", or a $D^*\overline{D}$ molecule...
- [M. A., C. Hidalgo-Duque, F. K. Guo and J. Nieves, arXiv:1512.03638, Phys. Lett. B 755, 337 (2016)]
 - We have presented the first simultaneous study of the two decays. (Y(4260) → J/ψππ. D Dn) in which Z. (3900) is seen
 - \odot Data are well reproduced in all fits ($\hat{\chi}^2\simeq 1$)
 - Two different scenarios are found:
 - $(b \neq 0) Z_c(3900)$ is a \overline{D}^*D resonance
 - 2) $(b = 0) Z_c(3900)$ is a virtual state
 - In any case, a single structure for Z_i(3885)/Z_i(3900) is needed
 - $\circ~$ Improved data on $J/\psi\pi$ invariant mass spectrum are necessary
- [M. A., P. Fernández-Soler and J. Nieves, arXiv:1606.03008, Eur. Phys. J. C (under review)]
 - We have used our T-matrix to compute energy levels in a finite volume
 - Good agreement is found for both scenarios (resonance and virtual state) with the energy levels reported in a LOCD simulation (Prelovsek et al., PR,D91,014504(15))
 - To discriminate both scenarios, we suggest to perform LQCD simulations at several different volumes

Experiment	Theory	Lattice	Conclusions
	000000000	00000	●○
Conclusions (this work)			

Conclusions (this work)

• $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for "tetraquark", or a $D^*\overline{D}$ molecule...

[M. A., C. Hidalgo-Duque, F. K. Guo and J. Nieves, arXiv:1512.03638, Phys. Lett. B 755, 337 (2016)]

- We have presented the first simultaneous study of the two decays $(Y(4260) \rightarrow J/\psi \pi \pi, \overline{D}^* D \pi)$ in which $Z_c(3900)$ is seen
- Data are well reproduced in all fits ($\hat{\chi}^2 \simeq$ 1)
- Two different scenarios are found:
 - (1) $(b \neq 0) Z_c(3900)$ is a \overline{D}^*D resonance
 - (2) $(b = 0) Z_c(3900)$ is a virtual state
- In any case, a single structure for $Z_c(3885)/Z_c(3900)$ is needed.
- Improved data on J/ $\psi\pi$ invariant mass spectrum are necessary

[M. A., P. Fernández-Soler and J. Nieves, arXiv:1606.03008, Eur. Phys. J. C (under review)]

- We have used our T-matrix to compute energy levels in a finite volume.
- Good agreement is found for both scenarios (resonance and virtual state) with the energy levels reported in a LOCD simulation (Prelovsek et al, PR,D91,014504(15))
- To discriminate both scenarios, we suggest to perform LQCD simulations at several different volumes

Experiment	Theory	Lattice	Conclusions
	00000000	00000	●○
Conclusions (this work)			

Conclusions (this work)

• $Z_c(3900)$ is a most-interesting, exotic, structure. A candidate for "tetraquark", or a $D^*\overline{D}$ molecule...

[M. A., C. Hidalgo-Duque, F. K. Guo and J. Nieves, arXiv:1512.03638, Phys. Lett. B 755, 337 (2016)]

- We have presented the first simultaneous study of the two decays $(Y(4260) \rightarrow J/\psi \pi \pi, \overline{D}^* D \pi)$ in which $Z_c(3900)$ is seen
- Data are well reproduced in all fits ($\hat{\chi}^2 \simeq 1$)
- Two different scenarios are found:
 - (1) $(b \neq 0) Z_c(3900)$ is a \overline{D}^*D resonance
 - (2) $(b = 0) Z_c(3900)$ is a virtual state
- In any case, a single structure for $Z_c(3885)/Z_c(3900)$ is needed.
- Improved data on J/ $\psi\pi$ invariant mass spectrum are necessary

[M. A., P. Fernández-Soler and J. Nieves, arXiv:1606.03008, Eur. Phys. J. C (under review)]

- We have used our *T*-matrix to compute energy levels in a finite volume
- Good agreement is found for both scenarios (resonance and virtual state) with the energy levels reported in a LQCD simulation [Prelovsek et al., PR,D91,014504(15)]
- To discriminate both scenarios, we suggest to perform LQCD simulations at several different volumes

Experiment	Theory 00000000	Lattice 00000	Conclusions
Conclusions (general)			

Conclusions (general)

- Charmonium spectrum, well known below $D\bar{D}$ threshold.
- Since 2003, the charmonium(-like) spectrum increases continuously (~ 1 state/year), but we do not fully understand: there are cc, there are meson-meson molecules, there are tetraquarks, and many others.
- They must be **mixing**, specially around thresholds.
- Lattice still must go down to physical masses.
- We shall all be studying Heavy Quark Physics...

Experiment	Theory 00000000	Lattice 00000	Conclusions
Conclusions (general)			

Conclusions (general)

- Charmonium spectrum, well known below $D\bar{D}$ threshold.
- Since 2003, the charmonium(-like) spectrum increases continuously (≃ 1 state/year), but we do not fully understand: there are cc̄, there are meson-meson molecules, there are tetraquarks, and many others.
- They must be mixing, specially around thresholds.
- Lattice still must go down to physical masses.
- We shall all be studying Heavy Quark Physics...

 $Z_c(3900)$: experiment, theory, lattice

[arXiv:1512.03638, Phys. Lett. B 755, 337 (2016)]

[arXiv:1606.03008, Eur. Phys. J. C (under review)]

Miguel Albaladejo (IFIC, Valencia)

Thanks for your attention

