

# LHCb results on penta(tetra)quark search

Marcin Kucharczyk on behalf of LHCb collaboration

**MENU 2016, Kyoto** 25.07 - 30.07 2016

## Outline

#### • Pentaquark discovery in $\Lambda_b \rightarrow J/\psi \ p \ K$

- → model independent analysis • Exotic baryonic resonances in  $Λ_b → J/ψ p π$
- Confirmation of resonant nature of Z(4430)<sup>-</sup>
- $\rightarrow$  4D amplitude analysis [PRL 112 (2014) 222002]
  - $\rightarrow$  moment analysis [PRD 92 (2015) 112009]
- Probing *X(3872)* composition

 $\rightarrow$  full amplitude analysis

 $\rightarrow$  quantum number confirmed 1^++

- Tetraquark searches in  $B_s n$ 
  - $\rightarrow$  preliminary results





[PRL 115 (2015) 072001]

[LHCb-PAPER-2016-009]

[LHCb-PAPER-2016-015]

[PRD 92 (2015) 011102]

[LHCb-CONF-2016-004]

### LHCb detector





• designed for CP violation & rare decays of heavy mesons



- precision coverage unique for LHCb 2 <  $\eta$  < 5 (~40% of bb in forward region)
- excellent tracking and vertexing ( $\sigma(IP) \sim 20 \ \mu m$  for high-p<sub>T</sub> tracks)
- good PID separation up to 100 GeV
- efficient trigger with  $\mu's$

#### Dataset: 1 + 2 fb<sup>-1</sup> in 2011 + 2012



[Int. J. Mod. Phys. A30 (2015) 1530022]

### XYZ states



- many different exotic charmonium-like states has been seen so far
- CDF/D0, Belle/BaBar, LHC, BESIII
- properties do not fit very well to the quarkonia picture

#### Many theoretical interpretations discussed

- $\rightarrow$  conventional quarkonia
- $\rightarrow$  multiquark states
- → meson molecules
- $\rightarrow$  hybrid mesons
- $\rightarrow$  threshold effects



[Olsen arXiv:1403.1254]

#### No clear picture

→ need experimental & theoretical effort to understand strong interaction dynamics that can cause their production and structure



## Pentaquarks

### $P_c: \Lambda_b \rightarrow J/\psi \ p \ K \ production$



#### Use large production of b-baryons at LHCb

- sample with > 26K signal candidates
- background from sidebands
- 5.4% of combinatorial background in the signal region



### P<sub>c</sub>: *unexpected structure*

#### Mass projections of $\Lambda_b \rightarrow J/\psi \ p \ K$



- expect  $\Lambda^*$  resonances to dominate
- $J/\Psi p$  resonance must have ccuud

unexpected peaking structure observed in  $J/\psi p$  system



Alternative explanations:

- specific veto for  $B_s \rightarrow J/\psi KK$  and  $B_0 \rightarrow J/\psi K\pi$
- ghost- and clone-tracks are removed
- is this a Λ\* reflection?

### P<sub>c</sub>: *amplitude analysis*

#### Six-dimensional amplitude fit

- resonance inv. mass, 3 helicity angles, 2 differences between decay planes
- resonances described by Breit-Wigner or Flatté
- amplitude model includes



$$\Lambda_b^0 \to J/\psi \Lambda^*, \ \Lambda^* \to pK^-$$

amplitude model includes all known 
$$\Lambda^*$$
 states  
wo interfering channels:  
 $\Lambda_b^0 \to J/\psi\Lambda^*$ ,  $\Lambda^* \to pK^-$   
 $\psi$  rest frame  
 $\chi^{\psi}$   $\Lambda_b^{\psi}$   $\Lambda_b$ 

lab frame

#### Full amplitude analysis that incorporates both decay sequences



### P<sub>c</sub>: results without P<sub>c</sub> states



PRL 115 (2015) 072001

#### **Extended model with all possible known** $\Lambda^*$ **amplitudes**

• m(pK) looks good but not  $m(J/\psi p)$ 



#### Other possibilities checked:

- isospin violating decays of  $\Sigma^{\ast 0}$
- adding two new  $\Lambda^*$  states with free mass & width
- additional non-resonant  $\Lambda^*{}'\!s$

#### Still fail to describe the data!

### $P_c$ : extended model with one $P_c$



#### Try all $\Lambda^*$ 's with $J^P$ up to $7/2^{\pm}$

- improvement with adding a  $J^{P} = 5/2^{+}$  pentaquark
- still not a good fit to  $m(J/\psi p)$



### $P_c$ : reduced model with two $P_c$ 's



# Two peaking components in $m(J/\psi p)$ with opposite parities required to fit data

- best fit has  $J^{p} = 3/2^{-}$  (lower mass) and  $5/2^{+}$  (higher mass)
- $(5/2^+, 3/2^-)$  also give good fits



### P<sub>c</sub>: *resonant behaviour*



#### Argand diagrams show the typical phase motion of a resonance

- amplitudes for 6 bins between  $+\Gamma$  and  $-\Gamma$
- fast change of phase crossing maximum of magnitude
- clear resonant-like behavior of the  $P_c(4450)^+$
- for the  $P_c(4380)^+$  it is not obvious  $\rightarrow$  one point is off by  $2\sigma$



### P<sub>c</sub>: model independent

#### Study $\Lambda_b \rightarrow J/\psi p K$ decay with a model independent approach wrt *Kp* contributions

- confirm that conventional *Kp* contributions cannot describe data
- no assumptions about their number, masses, widths and interference
- allow maximum orbital momentum depending on *Kp* mass
- analysis based on the Legendre polynomial moments extracted from the Kp system



H<sub>0</sub>: hypothesis that the data are described by  $\Lambda_b \rightarrow J/\psi \Lambda^* (\Lambda^* \rightarrow pK)$ 



### P<sub>c</sub>: model independent





LHCb-PAPER-2016-009

### P<sub>c</sub>: *model independent* Use theoretical predictions and experimental results to set

 $I_{max}(m_{Kp})$  for all masses within the kinematically allowed range

- weight according to  $m_{Kp}$  and the moments (filter out  $I_{max}$  according to  $m_{Kp}$ )
- look at reflections of the Kp system into the  $J/\psi p$  system



#### likelihood ratio to test various hypotheses



LHCb-PAPER-2016-009

### Р<sub>c</sub>: Cabibbo suppressed $\Lambda_b \rightarrow J/\Psi$ р п



Confirm that  $P_c$  states are really resonances

LHCb-PAPER-2016-015

- Cabibbo suppressed signal > 10 times lower wrt  $\Lambda_b {\rightarrow}$  J/ $\Psi$  p K
- background > 3 times higher



No obvious structure on Dalitz plot  $\rightarrow$  amplitude analysis

- consistency check with Cabibbo favored  $\Lambda_b\!\to J/\Psi$  p K
- 6D fit to interfering amplitudes:  $\Lambda_b \rightarrow J/\Psi N^*$ ,  $\Lambda_b \rightarrow P_c^+\pi^-$ ,  $\Lambda_b \rightarrow Z_c p$  [PRD 90 (2014) 112009]
- limited statistics  $\rightarrow$  some parameters fixed



LHC

### P<sub>c</sub>: Amplitude analysis of $\Lambda_b \rightarrow J/\Psi$ р п



LHCb-PAPER-2016-015

Not enough statistics for open-ended search of exotic hadrons in  $\Lambda_b \rightarrow J/\Psi p \pi$ 

- test the data for presence of previously observed states:
  - $\rightarrow P_c(4380)^+, P_c(4450)^+$  (LHCb)
  - $\rightarrow Z_c(4200)^-$  (Belle, [PRD, 90, 112009 (2014)])



Exotic components required for acceptable fit in all regions of phase-space

- combined significance of 3 states together >  $3\sigma$  evidence for exotic hadrons
- individual exotic hadron contributions are not significant

### P<sub>c</sub>: *interpretations*



#### **Data preference for 2 states**

- interference pattern only for states with opposite parity
- $\bullet$  needed to explain  ${\rm P_c}$  decay anglular distributions

### Models have to explain two P<sub>c</sub> states + their properties

#### **Pentaquark models**

- two colored diquarks + anti-quark [Maiani et al arXiv:1507.04980]
- colored diquark + colored triquark [Lebed arXiv:1507.05867]
- tightly bound quarks [Nucl. Phys. B123 (1977) 507]

(see previous theory talks)



### P<sub>c</sub>: *interpretations*



#### **Molecular models**

- meson exchange for binding
   [Z. Phys. C61 (1994) 525]
- baryo(hydro)charmonium  $\rightarrow$  molecular-like state of  $J/\psi N$ [arXiv:1508.00888]



#### Kinematic effects in non-perturbative rescattering processes

- size of rescattering amplitude not predicted so far
- difficult to predict two states
   [Phys.Rev. D92 (2015) 071502]
   [Phys.Lett. B751 (2015) 59-62]



#### **Experimental programme**

- new decay modes and production mechanisms
- look for isospin, strangeness, bottom partners
- open-charm and charmless decays

(e.g.  $\Lambda^{0}_{b} \rightarrow P^{0}_{c}K^{0} \rightarrow J/\Psi nK^{0}$ ) (e.g.  $\Lambda^{0}_{b} \rightarrow P^{0}_{cs}\varphi \rightarrow J/\Psi \Lambda \varphi$ ) (e.g.  $\Lambda^{0}_{b} \rightarrow \Sigma^{+}_{c}D^{-}, \Lambda^{0}_{b} \rightarrow \Lambda^{+}_{c}D^{*0}$ 

### Summary on pentaquarks



LHCb has observed two resonant states in  $\Lambda_b \to J/\psi~p~K$  consistent with pentaquarks

- $P_c(4380)^+$  observed with 9.0 $\sigma$  in multidimensional amplitude fit
- $P_c(4450)^+$  observed with 12.0 $\sigma$  in multidimensional amplitude fit
- Minimal quark content of these two states is ccuud
   → called pentaquark-charmonium states
- Relative rates within expectations
- Evidence of resonant behaviour

Evidence for exotic hadrons in  $\Lambda_b \to J/\psi \ p \ \pi$ 

- discriminate between resonance and kinematic effects
- amplitude analysis limited by sample size

More data needed to confirm quantum numbers and disprove scattering

### **Tetraquark candidates**

### Z(4430)<sup>±</sup>





- originally found by Belle in B→K(Z→ψ(2S)π-) and B→K(Z→J/ψπ-) [PRL 100(2008) 142001, PR D80(2009) 031104, PR D88(2013) 074026]
- not confirmed by BaBar [PR D79 (2009) 112001]



### Z(4430)<sup>±</sup>: LHCb confirmation



- ~25K  $B^0 \rightarrow K^+ \psi(2S) \pi^-$  candidates (x10 Belle/BaBar)
- two different analysis approaches
  - $\rightarrow$  4D amplitude analysis (invariant masses, helicity and decay planes angles) to measure resonance parameters and J<sup>P</sup>
  - → model independent analysis based on the Legendre polynomial moments extracted from the *K*п system (*similar to what was done for pentaquark*)



Background from sidebands (4% of combinatorial background in the signal region)



### Z(4430)<sup>±</sup>: amplitude fit





#### 4D amplitude analysis fit

- $J^{P} = 1^{+}$  confirmed
- others assignment excluded with large significance
- mass close to D\*D<sub>1</sub>(2420) threshold
- excellent agreement between LHCb & Belle

|                                 | LHCb                       | Belle                        |  |
|---------------------------------|----------------------------|------------------------------|--|
| M(Z) [MeV]                      | $4475\pm7^{+15}_{-25}$     | $4485\pm22^{+28}_{-11}$      |  |
| $\Gamma(Z)$ [MeV]               | $172\pm13^{+37}_{-34}$     | $200^{+41}_{-46}{+26}_{-35}$ |  |
| f <sub>Z</sub> [%]              | $5.9\pm0.9^{+1.5}_{-3.3}$  | $10.3^{+3.0+4.3}_{-3.5-2.3}$ |  |
| f <sup>1</sup> <sub>Z</sub> [%] | $16.7\pm1.6^{+2.6}_{-5.2}$ | _                            |  |
| significance                    | $>$ 13.9 $\sigma$          | $> 5.2\sigma$                |  |
| JP                              | 1+                         | 1+                           |  |

### Z(4430)<sup>±</sup>: resonant nature



#### Argand plot shows a clear resonant behaviour

- additional fit: Z amplitude with complex parameters in 6  $m_{\psi'n}$  bins
- phase rotation as expected for Breit-Wigner resonance



Results confirm Z(4430) with  $J^P = 1^+$  and its resonant behaviour

### Z(4430)<sup>±</sup>: model independent

#### Can the Z(4430) be explained by K<sup>\*</sup> reflections?

- sideband subtract and efficiency correct  $B^0 \rightarrow K^+ \psi(2S) \pi^-$  sample
- no assumptions on the  $K^*$  resonances: only its maximum J is limited
- angular structure of the  $K\pi$  system extracted with Legendre polynomial moments



K<sup>\*</sup> reflections cannot describe properly the Z(4430) region

Among all tetraquark candidates the  $Z(4430)^-$  is special  $\rightarrow$  being charged it cannot be a c anti-c state



### X(3872): 1 fb<sup>-1</sup>



 $B^+ \to X(3872)K^+, X(3872) \to J/\psi\rho^0, J/\psi \to \mu^+\mu^-, \rho^0 \to \pi^+\pi^-$  [PRL 110, 222001 (2013)]

1 fb<sup>-1</sup>

- observed by Belle in 2003
   [PRL 91 (2003) 262001]
  - $\rightarrow$  revolution in exotic meson/baryon
  - $\rightarrow$  seen now at 7 experiments
  - $\rightarrow$  mass close to  $\textit{DD}^*$  threshold
- conventional charmonium?
  - $\rightarrow X \rightarrow J/\psi \ \rho/\omega$  violate isospin
  - $\rightarrow c\bar{c}$  not expected to have large BF to  $(J/\psi \rho)$
- exotic interpretation

 $\rightarrow D^0D^{*0} = (c\overline{u})(\overline{c}u)$  molecular state,  $c\overline{c}u\overline{u}$  tetraquark,  $c\overline{c}g$  hybrid, glueball,...

• crucial: unambiguous quantum number J<sup>PC</sup>



 $M_{X(3872)} = 3871.69 \pm 0.17 \,\mathrm{MeV}/c^2$ 

 $\Gamma_{X(3872)} < 1.2 \text{ MeV}/c^2$ 

### X(3872): angular analysis with 3 fb<sup>-1</sup>



#### [PRD 92 (2015) 011102]

#### 5 independent angles describing the decay

# Full angular 5D analysis of $B^+ \rightarrow K^+(X(3872) \rightarrow \rho J/\psi)$

- ~1000 candidates at **3 fb<sup>-1</sup>** K<sup>+</sup>
- helicity formalism
   → decay described by 5 angles
- likelihood ratio test to compare J<sup>PC</sup> hypotheses
- fit with no assumptions on orbital angular momentum!



CDF determined quantum numbers to be  $J^{PC} = 1^{++}$  or  $2^{-+}$  [PRL 98 (2007) 132002]

### X(3872): quantum numbers



#### J<sup>PC</sup> = 1<sup>++</sup> confirmed!

- 3x larger sample than previous result
- decay mainly through S-wave (suggests compact state)
- D-wave negligible (< 4% @ 95% CL)
- $\rho(770) \rightarrow nn$  dominates
  - → decay violates isospin (unlikely to be ordinary ccbar)





### X(3872): radiative decays

- $X(3872) \rightarrow J/\Psi\gamma, \Psi(2S)\gamma$  disfavors pure  $DD^*$  molecule by 4.4 $\sigma$  (C = +1) [LHCb, NP B886 (2014) 665]
- consistent with cc(bar) state where the presence of the threshold lowers the mass and width



Charged partners of X(3872) predicted by some tetraquark models

next step at LHCb

```
\rightarrow precision mass measurement m_{X(3872)} - m_{\Psi(2S)}
```



Exotics in *B<sub>s</sub>*п

### X(5568)?



#### [PRL 117 (2016) 022003]

#### X(5568)<sup>±</sup>→ $B_s^0 \pi^{\pm}$ decay reported by D0 with significance of 5.1 $\sigma$ [arXiv:1602.07588] 90

- large  $B_s$  production rate:  $\rho^{D0}_{X} = (8.6 \pm 1.9 \pm 1.4)\%$
- minimal quark content bsud

$$M = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{MeV}/c^2$$
  

$$\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{MeV}/c^2$$





### LHCb data sample of $B_s$



#### Very large and clean B<sub>s</sub> sample at LHCb

- 20 times the D0 sample
- cut-based selection to clean  $B_s$  sample
- mass constraints on  $J/\psi$  and  $D_s$  to improve mass resolution



### *B<sub>s</sub>п* mass spectrum

- $B_{s}\,and\,\,\pi$  required to come from same PV
- signal shape is S-wave Breit-Wigner with parameters from D0
- polynomial for background

#### LHCb sees nothing!

 $\rightarrow$  upper limit by integrating likelihood in physical (non-negative  $\rho$ ) region

| $ \rho_X^{\text{LHCb}}(B_s^0 p_{\text{T}} > 5 \text{GeV}/c) $ | < | 0.009(0.010) @ 90(95)% CL  |
|---------------------------------------------------------------|---|----------------------------|
| $\rho_X^{\rm LHCb}(B_s^0 \ p_{\rm T} > 10  {\rm GeV}/c)$      | < | 0.016(0.018) @ 90(95) % CL |





### Summary on tetraquark candidates



- Z(4430)<sup>+</sup> in  $B^0 \rightarrow \Psi(2S) K^- \pi^+$  is now well established tetraquark
  - $\rightarrow$  existence confirmed with > 13  $\sigma$  in multidimensional amplitude fit with > 8  $\sigma$  in model independent analysis
  - $\rightarrow$  quantum numbers determined  $J^{P} = 1^{+}$
  - $\rightarrow$  resonant behavior observed in Argand diagram
- 1<sup>++</sup> confirmed for X(3872)
- D0 claims a bsud state, but we do not!
- Recent LHCb results on 4 new  $J/\psi\phi$  states [LHCb-PAPER-2016-019]
  - $\rightarrow$  X(4140), 1<sup>+</sup>, 8.4 $\sigma$
  - $\rightarrow$  X(4274), 1<sup>+</sup>, 6.0 $\sigma$
  - $\rightarrow$  X(4500), 0<sup>+</sup>, 6.1\sigma
  - $\rightarrow$  X(4700), 0<sup>+</sup>, 5.6 $\sigma$  (see backup)
- Other tetraquark candidates (no amplitude analysis so far)
   → Y(3940), Y(4260), Y(4350), Y(4660),... (Belle, BaBar, BES)

### Conclusions



- LHCb has made great progress in exotic spectroscopy
- Many new states discovered since the first observation of the X(3872)
- Discovery of two pentaquark states  $P_c(4450)^+$  and  $P_c(4380)^+$
- Other exotic containing cc (or bb) quarks e.g. Z(4430)+

 $\rightarrow$  good candidate for tetraquark with  $J^{P}=1^{+}$ 

 $\rightarrow$  plus four new states seen in J/ $\psi \phi$ 

• Amplitude analysis crucial to interpret data

 $\rightarrow$  establish quantum numbers

 $\rightarrow$  exclude some production mechanisms, e.g. threshold, rescattering,...

• Data sample tripled in RUN II

Extensive experimental program

LHCb, CMS, ATLAS, BaBar, Belle, Belle-II, BES-III, COMPASS



### $J/\psi\phi$ states



Full amplitude fit including interferences between  $B \rightarrow J/\psi K^*$ ,  $K^* \rightarrow \phi K$  and  $B \rightarrow X^0 K$ ,  $X^0 \rightarrow J/\psi \phi$ 



### $J/\psi\phi$ states



#### 4 structures visible: fit with BW amplitudes

