Construction and application of the KN local potential based on chiral unitary approach

Kenta Miyahara Kyoto Univ.

Tetsuo Hyodo

MENU2016 @ Kyoto univ., 2016, July

Contents

- 1. Motivation
- 2. Previous work (construction of potential)

- 3. This work (new potential)
 - > Improvement of construction procedure (step2)
 - New constraint from SIDDHARTA data (step1)
- 4.Application (structure of Λ(1405))5.Summary

Theoretical calculation of KNN (I=1/2, J^p=0⁻)

Conclusive result has not been achieved in theoretical calculations

Theoretical calculation of $\overline{K}NN$ (I=1/2, J^p=0⁻)

Conclusive result has not been achieved in theoretical calculations

KN subthreshold amplitude

Uncertainty is significantly reduced by SIDDHARTA

Construction of *r*-dep. local potential

Previous work

T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008)

- KN amplitude from chiral unitary approach
 - chiral unitary approach

Jido et al. Nucl. Phys. A 725, 181 (2003)

channel coupling

in S=-1 , I=0 sector

Attractions in $\overline{K}N$ and $\pi\Sigma$ leads to **double pole** structure

equivalent local potential

> problem

 $V^{
m equiv}$ does not reproduce the pole structure of $F_{ar{K}N}^{Ch}$

This work

Construction of *r*-dep. local potential

This work

Construction of *r*-dep. local potential

reproduce

 \overline{K} N pole (higher pole) πΣ pole (lower pole)

<u>This work</u>

Improvement (KN pole)

Hyodo-Weise (2008)

deviation of the amplitude on the real axis

------ change ΔV and fitting range

ΔF real and $\overline{\mathbf{KN}}$ pole position are improved

Improvement (πΣ pole)

second pole did not appear

change fit range and polynomial type of V^{equiv}

	Potential1	Potential2	Chiral unitary	Potential?
polynomial type in E	3rd order	10th order		
fit range [MeV]	1332~1410	1332~1520		-40 -60
Pole [MeV]	1427-17i	1428-17i 1400-77i	1428-17i 1400-76i	-80 -100 1340 1360 1380 1400 1420 1440

$\pi\Sigma$ pole appears at correct position

This work

Construction of *r*-dep. local potential

This work

Construction of *r*-dep. local potential

Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A881, 98 (2012)

quantitatively reliable potential

Results with SIDDHARTA

Application

Spatial structure of Λ(1405)

E-dep. complex potential

- normalization : $\int d\mathbf{r} \left[1 \frac{\partial V(r,E)}{\partial E}\right] \psi_{\mathrm{G}}^{E-\mathrm{dep.}^2}(r) = 1$
- expectation value : $\langle r^2 \rangle_{\rm G}^{E\text{-dep.}} = \int d\boldsymbol{r} \ r^2 \left[1 \frac{\partial V(r,E)}{\partial E} \right] \psi_{\rm G}^{E\text{-dep.}^2}(r)$

mean-squared radius becomes complex

$$E = E_{\rm res}, \ b \to 0 \ ({\rm zero \ range \ potential})$$

$$\begin{split} \psi(r) &\to \frac{A}{|A|} \sqrt{\frac{\operatorname{Im}[k]}{2\pi}} \frac{e^{ikr}}{r}, \quad \langle r^2 \rangle = \int d\mathbf{r} \ r^2 |\psi(r)|^2 \qquad \underbrace{\operatorname{dumping}}_{&\to \frac{\operatorname{Im}k}{2\pi}} 4\pi \int_0^\infty dr \ r^2 e^{-2\operatorname{Im}[k]r} = \frac{1}{2(\operatorname{Im}[k])^2} \end{split}$$

We use usual <r²> to interpret spatial structure.

Application

Λ(1405) is relatively larger (molecular state).

Other applications

• K nuclei (ex. KNN)

calculate up to 7-body system

Collaborate with

S. Ohnishi, T. Hoshino, W. Horiuchi, T. Hyodo

K⁻p correlation in heavy-ion collision

$$\begin{split} C(\mathbf{q},\mathbf{P}) \sim \int d\mathbf{r} S_{12}(\mathbf{r}) |\Psi_{12}(\mathbf{r},\mathbf{q})|^2 & \Psi_{_{12}} \text{ : relative wave function} \\ S_{_{12}} \text{ : hadron source function} \end{split}$$

A. Ohnishi, K. Morita, K. Miyahara, T. Hyodo, Nucl. Phys. A954 (2016) 294

Coupled-channel potential

dynamical $\pi\Sigma$ channel ($\overline{K}N$ - $\pi\Sigma$), Coulomb force ($K^{-}p$ - $\overline{K}^{0}n$)

<u>Summary</u>

> We have improved the potential construction procedure by changing ΔV , fit range, and fit function

 \longrightarrow $F_{\bar{K}N}^{Ch}$ is reproduced **precisely in complex E plane**

K

Ν

- We have constructed the realistic KN local potentials in both I=0 and I=1 channels with SIDDHARTA constraint
 - We have discussed the structure of Λ(1405)

$$1> \sqrt{\langle r^2 \rangle} = 1.44 \text{ fm}$$

molecular state of $\Lambda(1405)$

Published in K. Miyahara and T. Hyodo, Phys. Rev. C93 (2016) 015201

Backup slides

Error of amplitude (without SIDDHARTA)

(I=1)

Results

T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008)

KNN system

Paper	Shevchenko Gal, Mares, Revai (2007)	Yamazaki Akaishi (2007)	Ikeda Sato (2007)	Dote, Hyodo, Weise (2008,2009)	Ikeda, Kamano, Sato (2010)
K N interaction	E-indep. Pheno.	E-indep. Pheno.	E-indep. Chiral	E-dep. Chiral	E-dep. Chiral
Pole of Lambda(1405) (roughly)	1406.5-25i	1406-25i	1420-30i	1428-17i 1400-76i	1417-16i 1335-65i
Method (πΣN dynamics)	Faddeev (explicit)	Variational (effective)	Faddeev (explicit)	Variational (effective)	Faddeev (explicit)
Binding energy	50-70	48	60-95	17-23	9-16
Width	90-110	60	45-80	40-70	34-46

cf. exp. $(B,\Gamma) = (115,67)$ MeV Angello et al. (2005)

(95,162) MeV Ichikawa et al. (20013)

KN single-channel effective interaction

situation : nonrelativistic and S-wave

> equivalent local potential

Consistent with original strategy

Determination of "b" is improved

Consequence in few-body system

cf. Dote, Hyodo, Weise, Phys. Rev. C 79, 014003 (2009) :

Ikeda, Kamano, Sato, Prog. Theor. Phys. 124, 3 (2010) :

Information in the complex energy plane is important for physical state

From this energy shift, scattering length can be calculated → scattering length is important to decide amplitude below threshold

Improvement (2/2)

$\pi\Sigma$ pole position against fit range

Second pole position (HNJH)

"precise area" against fit range (HNJH)

- We get second pole
- P_{comp} changes depending on fitting range

Pole position with several polynomial types (HNJH)

fit range : 1332~1450 (1470 for 11th) -1650 MeV

Pole position (HNJH)

fit function : 8th order in E fit range : 1332~1450 MeV

> isospin average of $F_{\bar{K}N}$

V^{equiv} with physical mass (SIDDHARTA)

green : before fitting red : after fitting Isospin breaking $(m_{\overline{K}}=m_{K_{-}}, M_{N}=M_{p})$

Pole position (SIDDHARTA)

fit function : 10th order in E fit range : 1332~1450-1650 MeV

FkNCh in I=1 sector (SIDDHARTA)

<u>FkN in I=1 sector</u> (SIDDHARTA)

Pole uncertainty against the deviation on real axis (1)

Pole uncertainty against the deviation on real axis (2)

Stability of poles

Deviation on real axis [%]	KN pole [MeV]	πΣ pole [MeV]	RMS (K̄N pole) → abs [fm]	RMS $(\pi\Sigma \text{ pole})$ $\rightarrow \text{ abs [fm]}$
0	1424-26i	1381-81i	1.11-0.57i → 1.25	0.75-0.26i → 0.80
10	1425-23i		1.16-0.60i → 1.31	
25	1426-20i	1359-60i	124-0.64i → 1.39	0.79-0.19i → 0.81

Discussion

> Wave function

2

r

3

[fm]

4

5

0.2

-0.2

-0.4

-0.6

-0.8

-1

-1.2 L

 $\psi_R(r) \quad [\mathrm{fm}^{-3/2}]$

Im ψ_R

Re ψ_R

1

Λ(1405)

~0.85fm

K⁻: ~0.55fm

Hokkyo, Progress of Theoretical Physics, 33, 6 (1965)

$$\sqrt{\langle r^2 \rangle} = 1.06 - 0.57i \text{ fm}$$

 $|\sqrt{\langle r^2 \rangle}| = 1.20 \text{ fm}$

cf.

potential from Weinberg Tomozawa term Dote, Myo, Nucl. Phys. A 930,86 (2014)

$$\sqrt{\langle r^2 \rangle} = 1.22 - 0.47i \text{ fm}$$

response to the external current Sekihara, Hyodo, Phys.Rev.C 87,045202 (2013)

 $\sqrt{\langle r^2 \rangle} = 1.22 - 0.63 i~{\rm fm}$

Deviation of poles

Normalization of wave function

usual normalization (complex potential) :

$$\begin{aligned} \frac{\partial}{\partial t} (\Psi_m^* \Psi_n) &= \left(\frac{\partial}{\partial t} \Psi_m\right)^* \Psi_n + \Psi_m^* \left(\frac{\partial}{\partial t} \Psi_n\right) \\ &= i \left(-\frac{1}{2} \nabla^2 \Psi_m + V \Psi_m\right)^* \Psi_n - i \Psi_m^* \left(-\frac{1}{2} \nabla^2 \Psi_n + V \Psi_n\right) \\ &= -\nabla \cdot \boldsymbol{j} + 2 (\operatorname{Im} V) \Psi_m^* \Psi_n, \qquad \left(\boldsymbol{j} \equiv -\frac{i}{2} [\Psi_m^* \nabla \Psi_n - (\nabla \Psi_m)^* \Psi_n]\right) \end{aligned}$$

$$\frac{\partial}{\partial t}(\Psi_m^*\Psi_n) = i(E_m^* - E_n)\Psi_m^*\Psi_n.$$

$$i(E_m^* - E_n) \int d\boldsymbol{r} \Psi_m^* \Psi_n = 2 \int d\boldsymbol{r} \Psi_m^* (\mathrm{Im} V) \Psi_n.$$

Usual normalization doesn't satisfy the orthogonality.

Normalization of wave function

Complex potential (E-indep.) :

$$\begin{split} \frac{\partial}{\partial t} (\Psi_m^{\dagger *} \Psi_n) &= (\frac{\partial}{\partial t} \Psi_m^{\dagger})^* \Psi_n + \Psi_m^{\dagger *} (\frac{\partial}{\partial t} \Psi_n) \\ &= i (-\frac{1}{2} \nabla^2 \Psi_m^{\dagger} + V^* \Psi_m^{\dagger})^* \Psi_n - i \Psi_m^{\dagger *} (-\frac{1}{2} \nabla^2 \Psi_n + V \Psi_n) \\ &= -\nabla \cdot \boldsymbol{j}, \qquad \qquad \left(\boldsymbol{j} \equiv -\frac{i}{2} [\Psi_m^{\dagger *} \nabla \Psi_n - (\nabla \Psi_m^{\dagger})^* \Psi_n] \right) \end{split}$$

$$\frac{\partial}{\partial t}(\Psi_m^{\dagger} \Psi_n) = i(E_m - E_n)\Psi_m^*\Psi_n = i(E_m - E_n)e^{-i(E_n - E_m)t}\psi_m^{\dagger} \Psi_n$$
$$= i(E_m - E_n)e^{-i(E_n - E_m)t}\psi_m\psi_n$$
$$i(E_m - E_n)e^{-i(E_n - E_m)t}\int \boldsymbol{r}\psi_m\psi_n = 0.$$

Orthogonality is satisfied with Gamow vector for complex potential.

Normalization of wave function

E-dep. Complex potential :

$$\begin{split} \frac{\partial}{\partial t} \Psi_{E'}^{\dagger*} \Psi_E &= \frac{\partial \Psi_{E'}^{\dagger*}}{\partial t} \Psi_E + \Psi_{E'}^{\dagger*} \frac{\partial \Psi_E}{\partial t} \\ &= \left[-i \left\{ -\frac{1}{2} \nabla^2 + V^*(E') \right\} \Psi_{E'}^{\dagger} \right]^* \Psi_E + \Psi_{E'}^{\dagger*} \left[-i \left\{ -\frac{1}{2} \nabla^2 + V(E) \right\} \Psi_E \right] \\ &= -\nabla \cdot \boldsymbol{j}^G + i \Psi_{E'}^{\dagger*} \left(V(E') - V(E) \right) \Psi_E, \\ &\qquad \left(\boldsymbol{j}^G = -\frac{i}{2} \left[\Psi_{E'}^{\dagger*}(\boldsymbol{r}, t) \nabla \Psi_E(\boldsymbol{r}, t) - \left\{ \nabla \Psi_{E'}^{\dagger*}(\boldsymbol{r}, t) \right\} \Psi_E(\boldsymbol{r}, t) \right] \right) \\ &\qquad \int d\boldsymbol{r} \ \psi_{E'}(\boldsymbol{r}) \left[1 - \frac{V(\boldsymbol{r}, E') - V(\boldsymbol{r}, E)}{E' - E} \right] \psi_E(\boldsymbol{r}) = 0, \\ &\qquad (E' \neq E). \end{split}$$

Orthogonality is satisfied with Gamow vector and the additional term.

K⁻p correlation 1.1 K^-p correlatoin 1.05 C(q)0.95 0.1 0.3 0.2 0 $q \, [\text{GeV/c}]$