Predictions for pentaquark states of hidden charm molecular nature and comparison with experiment.
E. Oset, L. Roca, J. Nieves, E. Wang, J. J Xie, W. H. Liang, L.S. Geng, H.X Chen, J.X. Lu, D. M. Li, A. Feijoo, V. K. Magas and A. Ramos

The $\Lambda_{b}->\mathrm{J} / \Psi \mathrm{K}$ - p reaction
The LHCb experiment claiming two pentaquark states
Theoretical analysis of the experimental data
The $\Lambda_{b}->J / \Psi \pi^{-} p$ reaction
$\bar{\Xi}_{b}^{-}->\mathrm{J} / \Psi \mathrm{K}^{-} \wedge$ and a hidden charm strange pentaquark
$\wedge_{b} \rightarrow J / \Psi \eta \wedge$
$\Lambda_{b}->J / \Psi K^{0} \wedge$

Predictions for the $\Lambda_{b} \rightarrow J / \psi \Lambda(1405)$ decay

L. Roca, M. Mai, E.Oset and U.G. Meissner, EPJC 2015

$$
\begin{aligned}
& \text { Cabibbo } \\
& \text { suppressed } \\
& \text { Cabibbo } \\
& \text { allowed } \\
& |H\rangle=\left|K^{-} p\right\rangle+\left|\bar{K}^{0} n\right\rangle-\frac{\sqrt{2}}{3}|\eta \Lambda\rangle+\frac{2}{3}\left|\eta^{\prime} \Lambda\right\rangle
\end{aligned}
$$

u d quarks in $\mathrm{I}=0 \quad$ u d quarks in $\mathrm{I}=0$ (spectators) an s quark -> total $\mathrm{I}=0$

$$
\begin{aligned}
& \mathcal{M}_{j}\left(M_{\mathrm{inv}}\right)=V_{p}\left(h_{j}+\sum_{i} h_{i} G_{i}\left(M_{\mathrm{inv}}\right) t_{i j}\left(M_{\mathrm{inv}}\right)\right) \\
& h_{\pi^{0} \Sigma^{0}}=h_{\pi^{+} \Sigma^{-}}=h_{\pi^{-} \Sigma^{+}}=0, h_{\eta \Lambda}=-\frac{\sqrt{2}}{3} \\
& h_{K^{-} p}=h_{\bar{K}^{0} n}=1, h_{K^{+} \Xi^{-}}=h_{K^{0} \Xi^{0}}=0,
\end{aligned}
$$

$$
\begin{aligned}
& \left|\Lambda_{b}\right\rangle=\frac{1}{\sqrt{2}}|b(u d-d u)\rangle \\
& \text { turning after the weak process into } \\
& \frac{1}{\sqrt{2}}|s(u d-d u)\rangle \\
& |H\rangle \equiv \frac{1}{\sqrt{2}}|s(\bar{u} u+\bar{d} d+\bar{s} s)(u d-d u)\rangle \\
& =\frac{1}{\sqrt{2}} \sum_{i=1}^{3}\left|P_{3 i} q_{i}(u d-d u)\right\rangle, \\
& q \equiv\left(\begin{array}{c}
u \\
d \\
s
\end{array}\right) \quad \text { and } \quad P \equiv q \bar{q}^{\tau}=\left(\begin{array}{ccc}
u \bar{u} & u \bar{d} & u \bar{s} \\
d \bar{u} & d \bar{d} & d \bar{s} \\
s \bar{u} & s \bar{d} & s \bar{s}
\end{array}\right) \\
& P=\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}}+\frac{2 \eta^{\prime}}{\sqrt{6}}
\end{array}\right) \\
& |H\rangle=\frac{1}{\sqrt{2}}\left(K^{-} u(u d-d u)+\bar{K}^{0} d(u d-d u)\right. \\
& \left.+\frac{1}{\sqrt{3}}\left(-\eta+\sqrt{2} \eta^{\prime}\right) s(u d-d u)\right)
\end{aligned}
$$

$|p\rangle=\frac{1}{\sqrt{2}}|u(u d-d u)\rangle$,
$|n\rangle=\frac{1}{\sqrt{2}}|d(u d-d u)\rangle$,

$$
|H\rangle=\left|K^{-} p\right\rangle+\left|\bar{K}^{0} n\right\rangle-\frac{\sqrt{2}}{3}|\eta \Lambda\rangle+\frac{2}{3}\left|\eta^{\prime} \Lambda\right\rangle
$$

$|\Lambda\rangle=\frac{1}{\sqrt{12}}|(u s d-d s u)+(d u s-u d s)+2(s u d-s d u)\rangle$

Predictions for the $K^{-} p$ and $\pi \Sigma$ mass distributions

We need the meson-baryon transition amplitudes in coupled channels. We take them from the chiral unitary approach.

We have there $J / \Psi K^{-} p$, the final state in the LHCb pentaquark experiment

One sees a clear peak for the $\Lambda(1405)$ production in the $\pi \Sigma$ invariant mass distribution

Observation of $J / \psi p$ resonances consistent with pentaquark states in

$$
\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p \text { decays }
$$

Phys.Rev.Lett. 115 (2015) 072001

Two states claimed: $\operatorname{Pc}(4380), \Gamma=205 \mathrm{MeV} ; \quad \mathrm{Pc}(4450), \Gamma=40 \mathrm{MeV}$
Assignements: 3/2- 5/2+; 3/2+, 5/2ㅍ 5/2+, 3/2- Other less likeky
How can the peak in J $/ \psi$ appear? The J $/ \psi \mathrm{N}$ interaction is very weak !!

Predictions for hidden charm Baryon states JJ Wu, R Molina, E. O, B S Zou, PRL (2010)

(I, S)	z_{R}		g_{a}	
$(1 / 2,0)$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D}^{*} \Lambda_{c}^{+}$	$J / \psi N$	
	$4415-9.5 i$	$2.83-0.19 i$	$-0.07+0.05 i$	
		2.83	0.08	
In s-wave: 3/2			$0.85+0.02 i$	

C W Xiao, J Nieves, E. O, PRD 2013 : D*bar $\Sigma_{c}{ }^{*}$ channel included

$4417.04+i 4.11$	$J / \psi N$	$\bar{D}^{*} \Lambda_{c}$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D} \Sigma_{c}^{*}$	$\bar{D}^{*} \Sigma_{c}^{*}$
g_{i}	$0.52-i q$	07	$0.08-i 0.07$	$2.81-i q .07$	$0.12-i 0.10$
$\left\|g_{i}\right\|$	0.53	0.11	$(2.81$	$0.11-i 0.51$	
$4481.04+i 17.38$	$J / \psi N$	$\bar{D}^{*} \Lambda_{c}$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D} \Sigma_{c}^{*}$	$\bar{D}^{*} \Sigma_{c}^{*}$
g_{i}	$1.05+i q .10$	$0.18-i 0.09$	$0.12-i 0.10$	$0.22-i 0.05$	2.84
$\left\|g_{i}\right\|$	$(1.05$	0.20	0.16	0.22	2.84

$$
\begin{aligned}
T^{(J / \psi p)}\left(M_{J / \psi p}\right) & =V_{p} h_{K-p} G_{J / \psi p}\left(M_{J / \psi p}\right) \\
& \times t_{J / \psi p \rightarrow J / \psi p}\left(M_{J / \psi p}\right) \\
t_{J / \psi p \rightarrow J / \psi p}= & \frac{g_{J / \psi p}^{2}}{M_{J / \psi p}^{2}-M_{R}^{2}+i M_{R} \Gamma_{R}} 2 \mathrm{M}_{\mathrm{R}}
\end{aligned}
$$

L. Roca, J. Nieves, E. O PRD 92, 094003 (2015)

(a)

It is not trivial that the $\mathrm{K}^{-} \mathrm{p}$ and $\mathrm{J} / \psi \mathrm{p}$ distributions can be related like that

Since $D^{*} \operatorname{bar} \Sigma_{c}$ is the main channel one should start from this production and then make transition to $J / \psi p$, but this configuration is now allowed D^{*} bar Λ_{c} is allowed but it is has a very small strength in the wave function

This leaves only $J / \psi p$ to initiate the interaction to produce the resonance

The D^{*} bar Σ_{c} or D^{*} bar $\Sigma^{*}{ }_{\mathrm{c}}$ picture endures all tests of experiment: mass and width, spin parity $3 / 2^{-}$acceptable, coupling of resonance to J / ψ acceptable, nontrivial relation of $\mathrm{J} / \Psi \mathrm{p}$ and $\mathrm{K}^{-} \mathrm{p}$ distributions established.

Reanalysis including more resonances
L. Roca and E. O, 1602. 06791

$$
\Lambda(1800)\left(1 / 2^{-}\right)
$$

$$
D_{\frac{3}{2}^{-}}=\left\langle m_{p}\right|\left(k_{i} k_{j}-\frac{1}{3} \vec{k}^{2} \delta_{i j}\right) \sigma_{i} \epsilon_{j}\left|m_{\Lambda_{b}}\right\rangle
$$

$$
D_{\frac{5}{2}}=\left\langle m_{p}\right| i(\vec{\sigma} \times \vec{\epsilon})_{i} p_{j}\left(k_{i} k_{j}-\frac{1}{3} \vec{k}^{2} \delta_{i j}\right)\left|m_{\Lambda_{b}}\right\rangle
$$

$$
\begin{aligned}
& \frac{d^{2} \Gamma_{\Lambda_{b} \rightarrow J / \psi K^{-p}}\left(M_{K^{-p}}, M_{J / \psi p}\right)}{d M_{K^{-p}} d M_{J / \psi p}}=\frac{1}{16 \pi^{3}} \frac{m_{p}}{m_{\Lambda_{b}}^{2}} \times \\
& \times M_{K p} M_{J / \psi p}\left|T\left(M_{K p}, M_{J / \psi p}\right)\right|^{2}, \quad P_{\frac{3}{2}-}=\left\langle m_{p}\right| k_{j} \epsilon_{j}+\frac{i}{2} \epsilon_{i j l} \sigma_{l} k_{i} \epsilon_{j}\left|m_{\Lambda_{b}}\right\rangle \\
& \Lambda(1405) \quad\left(1 / 2^{-}\right) \\
& \Lambda(1520)\left(3 / 2^{-}\right) \\
& \grave{\Lambda}(1600)\left(1 / 2^{+}\right)
\end{aligned}
$$

The production of the \wedge resonances, and Pc can be put in terms of these operators

$$
T=a S_{\frac{1}{2}^{-}}+b P_{\frac{3}{2}^{-}}+c P_{\frac{1}{2}^{-}}+e D_{\frac{3}{2}}{ }^{-}+f D_{\frac{5}{2}}+
$$

The coefficient a , b, c,e , f contain parameters associated to the production of the \wedge resonances or pentaquarks
The pentaquarks with $1 / 2^{-}$and $3 / 2^{-}$are generated from the J / Ψ p interaction. Pc with other quantum numbers are introduced explicitly

(a)

(b)

A fit is done to the experimental mass distributions to determine the parameters

$$
\begin{align*}
c= & -\frac{1}{3} \alpha_{5} \frac{1}{M_{K-p}-m_{\Lambda(1600)}+i \frac{\Gamma_{\Lambda(1600)}}{2}} \\
& -\frac{1}{3} \alpha_{6} \frac{1}{M_{K-p}-m_{\Lambda(1810)}+i \frac{\Gamma_{\Lambda(1810)}}{2}} \\
& +C_{1 / 2}[1+ \\
& +\delta_{J_{B}^{P}, \frac{1}{2}-\alpha_{2} G_{J / \psi p} \frac{g_{J / \psi p}^{2}}{M_{J / \psi p}-m_{P_{c}(4450)}+i \frac{\Gamma_{P_{c}(4450)}^{2}}{2}}} \begin{aligned}
& \left.\delta_{J_{A}^{P}, \frac{1}{2}}-\alpha_{3} G_{J / \psi p} \frac{g_{J / \psi p}^{2}}{M_{J / \psi p}-m_{P_{c}(4380)}+i \frac{\Gamma_{P_{c}(4380)}^{2}}{2}}\right] \\
& \quad e=\alpha_{7} \frac{1}{M_{K^{-} p}-m_{\Lambda(1520)}+i \frac{\Gamma_{\Lambda(1520)}}{2}} \\
& +\alpha_{8} \frac{1}{M_{K^{-} p}-m_{\Lambda(1690)}+i \frac{\Gamma_{\Lambda(1690)}}{2}} \\
f= & C_{5 / 2}[1+ \\
& +\delta_{J_{B}^{P}, \frac{5}{2}}+\alpha_{9} \frac{1}{M_{J / \psi p}-m_{P_{c}(4450)}+i \frac{\Gamma_{P_{c}(4450)}^{2}}{2}} \\
& \left.+\delta_{J_{A}^{P}, \frac{5}{2}}+\alpha_{10} \frac{1}{M_{J / \psi p}-m_{P_{c}(4380)}+i \frac{\Gamma_{P_{c}(4380)}}{2}}\right] .
\end{aligned} .
\end{align*}
$$

3/2-, 3/2-

Same removing the wide Pc state

3/2-, 5/2+

(a)

(b)

Lucky experimental analysis

$$
\begin{aligned}
& 1+G T=V^{-1} T \\
& (1+G T)_{11}=\left(V^{-1} T\right)_{11}=\frac{T_{11} V_{22}-T_{12} V_{12}}{V_{11} V_{22}-V_{12}^{2}}
\end{aligned}
$$

If V_{12} is small $(1+G T)_{11} \simeq \frac{T_{11}}{V_{11}} \propto-T_{11}$

$$
\begin{aligned}
& T_{11} \simeq \frac{g_{1}^{A} g_{1}^{A}}{\sqrt{s}-\sqrt{s_{0}^{A}}}+\frac{g_{1}^{B} g_{1}^{B}}{\sqrt{s}-\sqrt{s_{0}^{B}}} \\
& T_{12} \simeq \frac{g_{1}^{A} g_{2}^{A}}{\sqrt{s}-\sqrt{s_{0}^{A}}}+\frac{g_{1}^{B} g_{2}^{B}}{\sqrt{s}-\sqrt{s_{0}^{B}}}
\end{aligned}
$$

T_{11} and T_{12} are not proportional because $\Lambda(1405)$ has two poles

11: Kbar N -> Kbar N
12: Kbar $N->\pi \Sigma$

Fit substituting $1+G T$ by the BW form with a Flattee.

Conclusion from fits:

Only from invariant mass distributions there is no preference for certain quantum numbers

There is no need for the wide Pc state

Of course, the LHCb experiment has more information

In view of that it is interesting that they pin down the particular observables that give evidence for both

We have shown that the wide Pc can be removed introducing contact tree level contributions, in particular one of the structure $\mathrm{D}_{5 / 2}$. NOTE THAT THE FIT OF LHCB PRODUCES NO BACKGROUND

Wang, Li , Q Zhao, arXiv 1508.00339
Photoproduction of J/psi
Theory assuming that only 5% of the width goes into J/psi N

How to reveal the exotic nature of the $P_{c}(4450)$

Feng-Kun Guo ${ }^{1,2, *}$ Ulf-G. Meißner ${ }^{2,3, \dagger} \dagger$ Wei Wang ${ }^{4,1, \ddagger}$ and Zhi Yang $^{2, \S}$
PRD 2015

(b)
assume the $\Lambda(1890)$ with a mass of 1.89 GeV is exchanged in the triangle diagram

Lower curve is for $\Gamma=100 \mathrm{MeV}$ (exp value)

Recent reanalysis by Bayar, Aceti, F.K. Guo and E.O For 3/2- and 5/2 + for the Pc, one needs p-wave In xic1 p \rightarrow J/psi p, we exclude this mechanism as an explanation. For other Quantum numbers, not excluded, but one can not assert the contribution.

Observation of the $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$ decay

Note: No $\Delta(1232)$!!
Λ_{b}

More pentaquarks?

Dynamically generated N^{*} and Λ^{*} resonances in the hidden charm sector around 4.3 GeV

Wu, Molina, E.O. and Zou, PRC 84 (2011)

(I, S)	z_{R}		g_{a}		
$(1 / 2,0)$		$\bar{D}^{*} \Sigma_{c}$	$\bar{D}^{*} \Lambda_{c}^{+}$	$J / \psi N$	
	$4415-9.5 i$	$2.83-0.19 i$	$-0.07+0.05 i$	$-0.85+0.02 i$	
		2.83	0.08	0.85	
$(0,-1)$		$\bar{D}_{s}^{*} \Lambda_{c}^{+}$	$\bar{D}^{*} \Xi_{c}$	$\bar{D}^{*} \Xi_{c}^{\prime}$	$J / \psi \Lambda$
	$4368-2.8 i$	$1.27-0.04 i$	$3.16-0.02 i$	$-0.10+0.13 i$	$0.47+0.04 i$
		1.27	3.16	0.16	0.47
	$4547-6.4 i$	$0.01+0.004 i$	$0.05-0.02 i$	$2.61-0.13 i$	$-0.61-0.06 i$
		0.01	0.05	2.61	0.61

Looking for a hidden-charm pentaquark state with strangeness $S=-1$ from Ξ_{b}^{-}decay into $J / \psi K^{-} \Lambda$

Chen, Geng, Liang, E.O. Wang, Xie, 1510. 01803, PRC 2016

A hidden-charm $S=-1$ pentaquark from the decay of Λ_{b} into

 $\boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\eta} \boldsymbol{\Lambda}$ states Feijoo, Magas, Ramos, E. O., 1512.08152

The $\Lambda_{b} \rightarrow J / \psi K^{0} \Lambda$ reaction and a hidden-charm pentaquark state
with strangeness
Lu, Wang, Xie, Geng, E. O. , 1601.00075, PRD 2016

Conclusions:

Predictions for $\Lambda_{\mathrm{b}}->\mathrm{J} / \psi \wedge(1405)$ made prior to LHCb experiment Preditions for D^{*} bar Σ_{c} and D^{*} bar $\Sigma^{*}{ }_{c}$ bound states also made before. The combination of both matches recent findings of experiment

A recent theoretical analysis based on only mass distributions shows no preference for any quantum numbers and does not require the wide Pc

The $\Lambda_{b}->\mathrm{J} / \psi \pi^{-} \mathrm{p}$ decay shows the same peak as the $\Lambda_{\mathrm{b}}->\mathrm{J} / \psi \mathrm{K}^{-} \mathrm{p}$.
Preditions are made for different reactions producing $\mathrm{J} / \Psi \wedge$ mass in the final state. The mass distribution of this pair exhibits clear signals of new pentaquark states with hidden charm and strangeness.

LHCb is conducting search in some of these reactions. Let us hope that the recent findings are only the beginning of a rich crop.

