Spectroscopy of pionic atoms via (p, ²He) reaction

Yuni N. Watanabe

University of Tokyo

Univ. of Tokyo: R. S. Hayano
Kyoto Univ.: S. Ashikaga, H. Fujioka, T. Furuno, K. Inaba, T. Kawabata, S. Matsumoto, T. Morimoto, M. Murata, A. Sakaue, Y. Takahashi, M. Tsumura, K. Watanabe
RCNP: S. Adachi, N. Aoi, G. Guillaume, K. Hatanaka, A. Inoue, C. Iwamoto, S. Noji, H. J. Ong, A. Tamii, T. S. Tang
Tohoku Univ.: Y. Matsuda
Konan Univ.: K. Heguri
RIKEN: K. Itahashi, T. Nishi
GSI: Y. K. Tanaka, H. Geissel
Beihang Univ.: S. Terashima
Inst. for Basic Science: T. Hashimoto

- 1. Introduction
- 2. Experimental Setup in RCNP
- 3. Test Experiments
- 4. Plan of the first experiment

Introduction: Deeply Bound Pionic Atoms

N. Ikeno et al., PTP126(2011)483.

Physics Motivation: Chiral Symmetry Restoration

W. Weise, NPA553(93)59.

Spectroscopy via (d, ³He) reactions

well established method since 1996
 ^{206, 208}Pb, ^{116,120,124}Sn(d, ³He) reactions were measured in GSI
 →partial restoration of chiral symmetry

 A systematic study on Sn isotopes in RIKEN

We are planning to use the (p, ²He) reaction

Spectroscopy via (p, ²He) reactions

Pioneering Experiment

no peak structure: poor resolution ~ 700 keV (FWHM)

•enhancement in bound region ← contribution from bound states

 \rightarrow different setup with an improved resolution in RCNP

Motivation for (p, ²He) reaction

1. gas cell target of Xe isotopes in RCNP

Physics results has been reported

P. Puppe et al., Physical Review C 84 (2011) J. P. Entwisle et al., Physical Review C 93 (2016)

Motivation for (p, ²He) reaction

1. gas cell target of Xe isotopes in RCNP

RIKEN systematic study

s-wave optical potential

$$U_s = -\frac{2\pi}{\mu} [\epsilon_1 (b_0 \rho + b_1 (\rho_n - \rho_p)) + \epsilon_2 B_0 \rho^2]$$

Motivation for (p, ²He) reaction

1. gas cell target of Xe isotopes in RCNP

- 2. Future development of dispersion matching \rightarrow resolution < 100 keV (FWHM)
- These are not limited to (p, ²He), but d beam energy is not enough in RCNP

First Goal: ¹²⁴Sn(p, ²He) reaction

¹²⁴Sn: relatively large cross section in Sn isotope
 relatively good S/N ratio

Experimental Setup

RCNP Facility

proton beam up to 400 MeV (⇔deuteron up to 200 MeV)

12

RCNP Facility

Experimental Setup: Grand Raiden

Comparison with the Previous Experiment

Momentum Transfer

small momentum transfer with a 350 MeV beam energy

There is no calibration peak

 Large energy difference between the beam and ejectile
 p(p, ²He)π⁰: out of acceptance → no in-situ calibration peak

Difficulties:

- Beam energy fluctuation can deteriorates the resolution

 ← beam monitor by the other spectrometer(LAS)
- 2. Beam energy must be precisely measured

c.f.) Q =
$$T_{2He} - T_{beam}$$

Beam energy monitor using LAS

Test experiments in 2015, 2016

- 1. Accidental background measurement
- 2. Measurement of ¹²C(p, ²He)¹¹B reaction
- 3. Beam monitor by LAS
- 4. Beam energy measurement

1. Accidental background measurement

There are 2 kinds of background in (p,²He) measurement

(i) ²He production w/o pion

flat continuum ~ 2 ub/sr/MeV

1. Accidental background measurement

(ii) Accidental background of (p,p') reaction

<u>single</u> (p,p') rate ~ 1.5 mb/sr/MeV
 accidental rate is proportional to (single (p,p') rate)²
 → accidental coincidence in our setup: 6 ub/sr/MeV
 (⇔ flat continuum: 2 ub/sr/MeV)

2. Measurement of ¹²C(p, ²He)¹¹B reaction

• E_{track1} + E_{track2} = const • $^{12}C(p, ^{2}He)^{11}B_{G.S}$ was observed

First observation of (p, ²He) reaction in Grand Raiden!

2. Measurement of ¹²C(p, ²He)¹¹B reaction

- •Count rate ~ 1 Hz for our experimental setup (30 nA, 5 mg/cm² CH₂) •Energy resolution of π^+ ~ 600 keV
 - ⇔ Beam energy is monitored by 100keV for every 100 sec

4. Beam Energy measurement

Setup (1) CH₂ target, GR@4.5°

p(p,p)p
 p(p,d)π⁺ (forward deuteron in C.M. frame)
 p(p,d)π⁺ (backward deuteron in C.M. frame)

Setup (2) CH₂ target, GR@8°

¹²C(p,d)

The analysis is ongoing...

Plan of the first experiment

Plan of the first experiment: expected spectrum

- •4.5 degrees, 350 MeV proton beam, 200 keV resolution
- 10 days of measurement
- proposal for B-PAC in August 2016 was submitted

Summary

•We are planning to perform a spectroscopy of pionic atoms via (p, ²He) reaction.

 In future, Xe gas target and dispersion matching will be adopted.

•²He is analyzed by Grand Raiden to achieve high resolution

•Test experiments: background evaluation, ¹²C(p, ²He)¹¹B, calibration method

• First experiment: ¹²⁴Sn target, aiming to observe 3 peaks to establish the method

Experimental Setup: GRAF beamline

