Charge radii by collinear laser spectroscopy

Hideki limura Japan Atomic Energy Agency

Outline

- 1. Charge radii and isotope shifts
- 2. Collinear laser spectroscopy to measure the isotope shifts
- 3. Example of some nuclides
- 4. Plan of collinear laser spectroscopy and ingas jet laser spectroscopy at RIBF

Mean square radius

$$\left\langle r_Z^2 \right\rangle = \int \rho_Z(r) r^2 4\pi r^2 \, dr / \int \rho_Z(r) 4\pi r^2 \, dr$$

$$\rho_Z = \frac{\rho_0}{[1 + \exp\{(r - R_Z)/a\}]}$$
$$R_Z \approx r_0 A^{\frac{1}{3}}$$

Then

lf

$$\left\langle r_Z^2 \right\rangle \cong \frac{3}{5} R_Z^2 \left[1 + \frac{3}{7} \pi^2 (a/R_Z)^2 \right]$$

$$\begin{split} \delta v^{AA'} &\equiv v^{A'} - v^A \\ \delta v^{AA'} &= \delta v_{\rm NMS} + \delta v_{\rm SMS} + \delta v_{\rm FS} \\ \delta v_{\rm NMS} : \text{Normal mass shift} \\ \delta v_{\rm SMS} : \text{Specific mass shift} \end{split}$$

 $\delta v_{
m FS}\,$: Field shift

Element	Mass number	Transition	IS (MHz)	NMS (MHz)	SMS (MHz)	FS (MHz)
Na	21-23	3s-3p	1595	1147	447	1
Pb	206-208	6p ² -6p7s	2713	11	3	2699

• The normal mass shift is due to the reduced mass correction.

$$\delta v_{\rm NMS} = v_0 \times m_e \frac{M_{A'} - M_A}{M_{A'} M_A}$$

• The <u>specific mass shift</u> originates from the correlations in the motion of the electrons.

In general, reliable predictions from theory are not possible.

For ns-np transitions: $\delta v_{SMS} = (0.3 \pm 0.9) \delta v_{NMS}$ ns²-nsp transitions: $\delta v_{SMS} = (0.0 \pm 0.5) \delta v_{NMS}$

Field shift

$$\delta v_{\rm FS} = F\left(\delta \langle r^2 \rangle + \frac{C_2}{C_1} \delta \langle r^4 \rangle + \frac{C_3}{C_1} \delta \langle r^6 \rangle + \cdots\right)$$

$$\approx F\delta\langle r^2\rangle$$

F: Electronic factor

- *F* depends on transition, *Z*, (and *A*).
- For the determination of *F*, the most reliable approach is to use empirical data.
- Accuracy of *F* is typically 10 %.

Isotope shifts in atomic resonance lines

Z	Elemen t	Mass number	Transition	Wave length (nm)	IS (MHz)
3	Li	6-7	2s-2p	670.8	10540
11	Na	23-24	3s-4p	330.3	720
19	К	39-40	4s-4p	769.9	1260
36	Kr	82-84	5s-5p	877.7	60
38	Sr	87-88	5s²-5s5p	460.7	45
54	Xe	134-136	6s-6p	823.1	-90
55	Cs	133-134	6s-6p	852.1	36
70	Yb	174-176	6s²-6s6p	398.8	510
80	Hg	198-199	6s ² -6s6p	253.7	-270
82	Pb	207-208	6p²-6p7s	283.3	-1400

Linewidth in laser spectroscopy

Doppler broadening

$$\Delta v_D = \frac{2v}{c} \sqrt{\frac{2\ln 2kT}{M}} \approx 0.4 - 4 \text{ GHz}$$

Natural linewidth

$$\Delta v = \frac{1}{2\pi\tau} \approx 10 \text{ MHz}$$

Г

Saturation broadening

increases with laser intensity

Pressure broadening

 $\approx 10 \text{ MHz/Torr}$

Transit time broadening

Collinear laser spectroscopy setup

1. Doppler broadening

$$\frac{\Delta v_1}{\Delta v_0} = \sqrt{\frac{kT}{eU}}$$

 $2 \text{ GHz} @ 0 \text{ keV} \longrightarrow 2 \text{ MHz} @ 30 \text{ keV}$

2. Doppler shift $\omega = \omega_0 \sqrt{\frac{1 - \frac{V}{c}}{1 + \frac{V}{c}}}$

V: velocity of atoms

roughly 5 MHz per volt

line width $\approx 100 \text{ MHz}$

On-line collinear spectroscopy

- CERN-ISOLDE: ⁶⁷⁻⁸¹Ga, ²¹⁻³²Mg (β-NMR), ¹²Be, ¹⁷⁻²⁸Ne (collisional ionization), ²⁰²⁻²⁰⁵Fr (resonant ionization)
- Jyväskylä-IGISOL: ⁵⁰⁻⁵⁶Mn, ⁴²⁻⁴⁶Sc
- TRIUMF-ISAC: ⁷⁴Rb, ^{8,9,11}Li, Mg (β -NQR)
- MSU
- Mainz-TRIGA
- ANL-CARIB
- Orsay-ALTO

Efficiency of collinear spectroscopy

Ion beam transmission	0.5
Charge exchange	0.5
Population of lower state of excitation	0.01
Branching ratio of observed transition	0.5
Collection of photons	0.3
Filter transmission	0.2
Photomultiplier	0.2
Over all	1 × 10 ⁻⁵
Back ground	
Dark current of photomultiplier	100 cps
Scatter of laser	100 cps
Photons from ion heam	10 000

Required beam intensity $\approx 10^6$ atoms/s

Noise Reduction = $\frac{\text{Bunched Noise}}{\text{DC Noise}} = \frac{\text{Pulse duration}}{\text{Time between pulses}}$

$$\frac{\Delta t}{T} \cong \frac{5 \,\mu \text{s}}{50 \,\text{ms}} = 10^{-4}$$

Required beam intensity $\approx 10^2$ atoms/s

Liquid drop model

$$r^2 = \frac{3}{5}r_0^2 A^{\frac{2}{3}} \left(1 + \frac{5}{4\pi}\beta_2^2\right)$$

Droplet model

$$r^2 = \frac{3}{5} R_Z^2 A^{\frac{2}{3}} \left(1 + \frac{5}{4\pi} \beta_2^2 \right)$$

$$R_Z = r_0 A^{\frac{1}{3}} (1 + \bar{\varepsilon}) \times \left(1 - \frac{2N}{3A} \frac{I - \bar{\delta}}{B_S} \right)$$

$$I = \frac{N - Z}{A}$$

Collinear laser spectroscopy setup at RIKEN

 $v_0 = (v_{anticol} \times v_{anticol})^{1/2}$ \rightarrow $v_0 = 485573619.7 (3) MHz$

Ni (Z=28)

Α	Ν	Half life	Expected yield @SLOWRI (ions/s)
54	26	110 ms	10^2
56	28	6.1 d	10^4
58	30	stable	
60	32	stable	
62	34	stable	
64	36	stable	
66	38	2.3 d	10^4
68	40	29 s	10^3
70	42	6.0 s	10^2
72	44	1.6 s	10^1
74	46	680 ms	10^0
76	48	240 ms	10^-2

Ti (Z=22)

B (Z=5)

Zr (Z=40)

Α	Ν	Half life	Expected yield @SLOWRI (ions/s)
80	40	4.6 s	10 ²
81	41	5.5 s	3 × 10 ³
82	42	32 s	9×10^{4}
83	43	42 s	10 ⁶
84	44	26 m	8×10^{6}
85	45	11 m	3×10^{7}
86	46	17 h	8 × 10 ⁷
87	47	1.7 h	10 ⁸

Neutron Number

¹²⁴Xe 500 pnA

FRDM prediction by Möller

Laser spectroscopy with resonant ionization laser-ion-source

Methods of laser spectroscopy with laser-ion-source

- In-source laser spectroscopy: ISOLDE (Cu, Po), PNPI (Yb, Tm)
- In-gas-cell laser spectroscopy: Leuven (Cu, Ag)

Line width ~ 6 GHz (laser bandwidth ~ 2 GHz)

• In-gas-jet laser spectroscopy planned at PALIS (SLOWRI)

Line width ~ 3 GHz (laser bandwidth ~ 2 GHz),

~ 0.5 GHz (narrowband laser bandwidth ~ 20 MHz)

Collinear laser spectroscopy

- sensitivity 100 atoms/s
- resolution 100 MHz
- In-gas jet laser spectroscopy
 - sensitivity 0.1 atoms/s
 - resolution 500 MHz (with narrowband laser)

Acknowledgements

- JAEA M. Koizumi, Y. Ishida, M. Miyabe, S. Ichikawa, M. Oba, T. Shibata
- RIKEN M. Wada, T. Sonoda, M. Reponen, K. Kojima, I. Katayama V. Lioubimov, A. Takamine

Hiroshima Int. U T. Horiguchi

- Texas A&M U H. Schuessler
- McGill U F. Buchinger, J. Crawford
- TRIUMF M. Pearson