

RIBF Nuclear Physics Seminar March 29, 2016 RIBF, Wako

Illuminating alpha clusters in an active target and time projection chamber

Daisuke Suzuki

Riken Nishina Center

daisuke.suzuki@ribf.riken.jp

+81-(0)48-467-4958

Uniformity to anisotoropy

NASA (http://map.gsfc.nasa.gov)

Imhomogenious nuclei

I. Tanihata *et al.* Phys. Rev. Lett. 55, 2676 ('85)

Alpha clustering

J-P. Ebran et al. Phys. Rev. C 90, 054329 ('14)

New magic numbers

O. Sorlin, M-G. Porquet, Phys. Scr. T152, 014003 ('13)

Alpha decay (Rutherford, 1899)

Resonating Group Method (RGM, '37)

Molecular Viewpoints in Nuclear Structure Phys. Rev. C 52, 1083 ('37)

Molecular orbital model ('73)

⁸Be ⁸⁻¹⁶Be Е_{вн} Е_{ВН} (Mev) M.O.Model ⁸Be: 9(z) (Mev) Q-Particle Model ⁸Be(o*) -50 -50 0.3 ⁹Be(3/2⁻) ¹⁶Be ${}^{10}Be(0^*)$ ¹⁵Be 0.1 d = 2.0 fm ¹¹Be(V2⁻) ¹⁴Be -60 -60 0.3 ¹³Be 02 ¹²Be(0⁺) 0.1 d= 3.0fm -70<u>L</u> ʻ0`b 2 3 5 5 d(fm) d(tm) 0.3 (a) (b) Total energy curves of the lowest normal parity states of Be isotopes. . 10. 02 M. Seya, M. Kohno, S. Nagata, PTEP 65, 204 ('81) d=4.0 fm 2 z/b Fig. 8. The density distributions for 8Be along z-axis. The solid lines are given by the molecular-orbital model and the broken lines by the alpha-particle model.

Y. Abe, J. Hiura, H. Tanaka, PTEP 49, 800 ('73)

Linear chain alpha states ('56)

Interpretation of Some of the Excited States of 4n Self-Conjugate Nuclei*

Phys. Rev. 101, 254 ('56)

Game changer 1: no or least assumption of clusters

Game changer 1: no or least assumption of clusters

T. Suhara and Y. Kanada-En'yo,

Phys. Rev. C 82, 044301 ('10); J. Phys. Conf. Ser. 321, 012047 ('11)

Game changer 2: radioactive beams

Mass number

Ikeda, Takigawa, Horiuchi, Prog. Theor. Phys. E68, 464 ('68) Figure from von Oertzen, Freer, Kanada-En'yo, Phys. Rep. 432, 43 ('06)

Game changer 3: RI-beam light-ion reactions

Analysis methods

DWBA, DWIA, CRC ... (direct reactions)
 R-Matrix (Resonance)

- Versatile observables
 - Spin and parity
 - Spectroscopic factor

<A+n | A> (single-particle strength)

Decay width

<A+α | A> (alpha clustering)

Game changer 3: detectors for RIB reactions

Type I: Strip-silicon array

- MUST^[1]/MUST2^[2] (GANIL)
- HiRA^[3] (NSCL)
- Tiara^[4] (UK)
- Helios^[5] (ANL)

Y. Blumenfeld *et al.*, Nucl. Instr. Meth. A 421, 471 ('99)
 E. Pollacco *et al.*, Eur. Phys. J. A 25, 287 ('05)
 N.S. Wallace *et al.*, Nucl. Instr. Meth. A 583, 302 ('07)
 M. Labiche *et al.*, Nucl. Instr. Meth. A 614, 439 ('10)
 J.C. Lighthall *et al.*, Nucl. Instr. Meth. A 622, 97 ('10)

Type II: Active gas target

- MSTPC^[1] (RIPS)
- TACTIC^[2] (TRIUMF)
- Maya^[3] (GANIL)
- AT-TPC (NSCL)
- CAT^[4] (CNS)
- Maiko^[5] (Kyoto)

Y. Mizoi *et al.*, Nucl. Instr. Meth. A 431, 112 ('99)
 A.M. Laird *et al.*, Nucl. Instr. Meth. A 573, 306 ('07)
 C.E. Demonchy *et al.*, Nucl. Instr. Meth. A 583, 341 ('07)
 S. Ota *et al.*, J. Radioanal. Nucl. Chem. 305, 907 ('15)
 T. Furuno *et al.*, J. Phys.: Conf. Ser. 569, 012042 ('14)

AT-TPC collaboration since 2008 <u>Active Target Time Projection Chamber</u>

P.I.: D. Bazin, W. Mittig

First experiments in 2011

- ¹⁰Be (⁸Be + 2*n*) and ¹⁴C (¹²C + 2*n*) via resonant α scattering.
- Essential roles of 2*n* from the simplest systems.

¹⁰Be: when molecules meet shells

D. Suzuki, A. Shore, W. Mittig, J.J. Kolata et al., Phys. Rev. C 87, 054301 ('13)

Evolution of berylium isotopes

Molecular orbitals

N. Itagaki and S. Okabe, Phys. Rev. C 61, 044306 ('00)

σ-orbital (chain)

Relativistic Hartree-Bogoliubov

(a)

-59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

J-P. Ebran *et al.* Phys. Rev. C 90, 054329 ('14)

Signature of molecular orbitals

Thick target method

K. P. Artemov et al., Sov. J. Nucl. Phys. 55, 1460 ('92)

Thick target method

K. P. Artemov et al., Sov. J. Nucl. Phys. 55, 1460 ('92)

Time Projection Chamber (TPC)

The first realization for **PEP-4** with the 29 GeV e^+-e^- collider at Stanford ('70s)

C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 ('08)

since 2003 at GANIL

Beam/Energy [MeV/u]	Date	Reaction	Gas	Mixture [%]	Pressure [mbar]
⁸ He @ 3.9	2003	⁸ He(p,p')	C_4H_{10}	100	1000
⁸ He @ 3.5	2003	⁸ He(p,d) ⁷ He	C_4H_{10}	100	525
^{25,26} F @ 50.0	2004	$^{25}F(d,^{3}He)^{24}O$ D ₂		100	2200
⁵⁶ Ni @ 50.0	2005	⁵⁶ Ni(d,d') D_2		100	1050
⁸ He @ 15.4	2005	${}^{8}\text{He}({}^{12}\text{C},{}^{13}\text{N}){}^{7}\text{H}$	C_4H_{10}	100	30 TRUME
¹¹ Li @ 3.6	2006	¹¹ Li(p,d) ¹⁰ Li	C_4H_{10}	100	150
		¹¹ Li(p,t) ⁹ Li	C_4H_{10}	100	664
⁶ He @ 3.5	2007	⁶ He(p,n) ⁶ Li	C_4H_{10}	100	107
⁶⁸ Ni @ 50.0	2010	⁶⁸ Ni(d,d')	D_2	100	1040
		⁶⁸ Ni(α,α')	$\mathrm{He} + \mathrm{CF}_4$	98/2	500
⁵⁶ Ni @ 50.0	2011	⁵⁶ Ni(a,a')	$\mathrm{He} + \mathrm{CF}_4$	98/2	1200
⁸ He @ 15.4	2011	⁸ He(¹⁹ F, ²⁰ Ne) ⁷ H	$\mathrm{He} + \mathrm{CF}_4$	10/90	175 ISOL DE
¹² Be @ 3.0	2012	¹² Be(p,p')	C_4H_{10}	100	100

Half-scale prototype of AT-TPC (2011 -)

PAT-TPC

D. Suzuki, M. Ford, D. Bazin, W. Mittig et al., Nucl. Instr. Meth. A 691, 39 ('12)

Not just a prototype!

	PAT-TPC	Maya
Gas thickness	50 cm	28 cm
Pad size	2 mm (strip)	9 mm (hexagonal)

Waveform digitizer

Neutrino flux monitor TPCs in Tokai-to-Kamiokande (T2K) experiment

T. Lux, J. Phys: Conf. Ser. 65, 012018 ('07)

- 511 switching capacitors array memory
- 10 \sim 100 MHz sampling (Time window 5 \sim 50 μs)
- 12-bit ADC
- 288 channels /board

GET (General Electronics for TPCs)

E. Pollacco et al., Phys. Proc. 37, 1799 ('12)

Travel to South Bend

Twinsol facility at Notre Dame

F. Becchetti et al., Nucl. Instr. Meth. A 505, 377 ('03)

A pair of solenoid

D₂ gas target

⁷Li 0.5 eμA 29 MeV

Reaction imaging

⁶He(α, α): excitation energy spectrum

⁶He(α, α): reaction vertices map

⁶He(α , α): cross sections breakdown

Suppression of alpha decay width

Melting alpha clusters in ²⁰Ne

T. Yamada, Phys. Rev. C 42, 1432 ('90)

Deformed-basis AMD

TABLE I. Observed [10] and calculated α -RW (θ_{α}^2), multiplied by 100 at the channel radius a=6 fm, for $K^{\pi}=0^+_1$, 0^+_4 and 0^-_1 band members. For comparison, the results of the $(sd)^4$ shell model (SM) [18], $\alpha + {}^{16}$ O RGM (RGM) [19], and $(\alpha + {}^{16}$ O)+(8 Be+ 12 C) coupled channel OCM (OCM) [20] are shown.

Kπ	J^{π}	$\theta_{obs}(a)^2 \times 100$	SM	RGM	OCM	AMD
0_{1}^{+}	6_{1}^{+}	1.0 ± 0.2	0.20	1.4	0.50	0.53
	8^{+}_{1}	0.094 ± 0.027	0.020	0.24	0.10	0.08

K^{π}	J^{π}	W^J	$\langle \hat{V}_{ls} \rangle$
0_{1}^{+}	0_{1}^{+}	0.70	-5.2
	2^{+}_{1}	0.68	-5.3
	4_{1}^{+}	0.54	-5.9
	6_{1}^{+}	0.34	-8.4
	8^{+}_{1}	0.28	-10.9

M. Kimura, Phys. Rev. C 69, 044319 ('04)

Melting alpha clusters in ¹⁰Be 2⁺, 4⁺ states

AMD VAP (variation after spin-parity projection)

In the $K^{\pi} = 0_1^+$ band, the 2α cores weaken with the increase of the total spin due to the spin-orbit force. The reduction of the clustering structure is more rapid in the case of interaction (2) with the stronger spin-orbit force, and the 2_1^+ and 4_1^+ states in case (2) interactions contain the dissociation of α .

$$V_{LS} = \{u_I \exp(-\kappa_I r^2) + u_{II} \exp(-\kappa_I r^2) + u_{II} \exp(-\kappa_I r^2)\} \frac{(1+P_{\sigma})}{2} \frac{(1+P_{\tau})}{2} \mathbf{L} \cdot (\mathbf{S_1} + \mathbf{S_2}), \quad (15)$$
(1) $u_I = -u_{II} = 3000 \text{ MeV}$
(2) $u_I = -u_{II} = 3700 \text{ MeV}$

Kanada-En'yo, Horiuchi, Doté, Phys. Rev. C 60, 064304 ('99)

- Clustering and shell effects seem to be highly competitive in Be isotopes
- Effects of N = 6 subshell closure?

Effects of $1p_{1/2}$ - $1p_{3/2}$ splitting

Molecular Orbital Model

M. Seya, M. Kohno, S. Nagata, PTEP 65, 204 ('81)

Probe ground state alpha clustering

When nuclei become linear

¹⁴C:

A. Fritsch, S. Beceiro-Novo, D. Suzuki, W. Mittig et al., Phys. Rev. C 93, 014321 ('16)

Clusters and geometry

Magnetic nano cubic G. Singh et al., Science 345, 1149 ('14) 110] 30 nm [100] Zeeman coupling 1D belt structure Dipole-dipole interactions

Atlas of femto-scale geometries

RHB (Triaxial and reflection-asymmetric)

3α linear chain puzzle in ^{12}C

Fermionic Molecular Dynamics (FMD, '04)

J-P. Ebran et al. Phys. Rev. C 90, 054329 ('14)

- Simplest linear chain
- Predicted slightly-bent chain for 0_3^+ at 10.3 MeV
- And yet no experimental evidence

Linear chain prediction in ¹⁴C

0.2

0

0

20

60

40

 $\theta_{\rm B.B.}$ [deg]

80

¹⁰Be(2⁺) *L*=6

Linear chain's signal

- Rotational band
- Inelastic branching: degree of linearity

Resonant α scattering of ¹⁰Be with PAT-TPC

promising candidate of 3α linear chain

How elusive is linear chain in ¹²C

Or why linear chain emergies in ¹⁴C?

T. Suhara, Y. Kanada-En'yo, Phys. Rev. C 82, 044301 ('10); J. Phys. Conf. Ser. 321, 012047 ('11)

Summary

- Halfscale PAT-TPC developped at the NSCL.
- First experiments carried out for clustering in ¹⁰Be and ¹⁴C.
 Thick 'active' target method for resonant scatteirng
 ⁶He and ¹⁰Be beam from Twinsol facility at Notre Dame
 Only 2 neutrons, but significant and essential evolution of cluster structures.
- Bibliography
 - Review: S. Beceiro-Novo, T. Ahn, W. Mittig, D. Bazin, Prog. Part. Nucl. Phys. 84, 124 ('15)
 - **PAT-TPC:** D. Suzuki *et al.*, Nucl. Instr. Meth. A 691, 39 ('12)
 - ¹⁰Be: D. Suzuki *et al.*, Phys. Rev. C 87, 054301 ('13)
 - ¹⁴C: A. Fritsch *et al.*, Phys. Rev. C 93, 014321 ('16)

Collaborators

T. Ahn (Notre Dame), D. Bazin, S. Beceiro-Novo, J. Browne,

Z. Chajecki (Western Michigan), M. Ford (Air Force), A. Fritsch (Gonzaga),

E. Galyaev (Florida), W.G. Lynch, W. Mittig, A. Shore, D. Suzuki (Riken)

B. Bucher (*LLNL*), X. Fang, A.M. Howard (*Aarhus*), J.J. Kolata, A.L. Roberts, X.D. Tang (*Lanzhou*)

F.D. Becchetti, M. Febbraro (ORNL), M. Ojaruega (DOE), R. Torres-Isea

D. Ben-Ali

Argonne NATIONAL LABORATORY A.M. Rogers (UMass Lowel) MANCHESTER 1824

A.J. Mitchell (ANU)

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

N. Keeley

