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TDA starts from 21st century for analyzing complicated data 
geometrically and topologically

Data Has Shape, Shape Has Meaning, Meaning Drives Value

Gunnar Carlsson’s Gr. (math. Stanford, AYASDI)

Konstantin Mischaikow’s Gr. (math. Rutgers)

Robert Ghrist’s Gr. (math. UPenn)

- bigdata, social network, medical science, finance, etc

- complex fluid, time series data

- network flow, sensor network

Our group in AIMR
- materials science

Topological Data Analysis



Materials TDA in AIMR
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Fig. 1 left) 3D visualisation of a partially crystallised packing
containing 200,000 beads. right) MegaTwo

opents in topological data analysis has resulted in new tools
that allows us to interrogate the geometry, topology and me-
chanics of granular systems at the grain scale? ? ? .

In this paper we demonstrate that new ideas associated with
computational topology provide an efficient, robust and faith-
ful approach to implementing tractable models to decipher
the complexity of the spatial structures of the configurational
space of granular systems. More specifically, we present a
novel topological characterisation tool, Persistent Homology
(PH), to study dense granular systems. We show that PH
is able to explore and characterise the configurational phase
space of disordered and partially ordered macroscopic gran-
ular systems by identifying key features specific to granular
systems.

We first detail the experimental systems and the imaging
procedure followed by the mathematical description of the
persistent homology, and in particular its application for gran-
ular systems.

2 Experiment and methodology

In this section we briefly present the experimental procedure
and the tools that we utilise to acquire experimental data. Fur-
ther we describe the underlying mathematical technique to in-
terrogate the experimental data to reveal hidden topological
structure in data.

2.1 Experimental

We analyse two sets of experimental granular packings each
containing over 150,000 monosized acrylic beads (diameter d
= 1 mm, polydispersity = 0.025 mm): i) a partially ordered
packing produced using a vibrational protocol with a pack-
ing density of f = 0.685 (see Fig. ??a) and ii) a fully dis-
ordered packing produced by pouring beads into a cylindri-
cal container with a packing density of f = 0.635 (see Fig.
??b). Details of the experimental procedure can be found

elsewhere? ? . Our experiments harness X-ray Computed To-
mography (XCT) and three-dimensional (3D) image analysis
to accurately determine grain centres with the precision of
(< 10�3µm) and grain’s diameter with precisions greater than
⇡ 10�2µm? .

Figure ??(a) shows a 3D rendering of such a partially crys-
tallized structure. The bright regions correspond to locally dis-
ordered aggregates of beads; a disordered core and boundaries
between different crystal domains are thus highlighted. Both
random and crystalline phases coexist in the packing. Figure
??(b) shows the disordered packing.

Helical XCT is utilised to image the internal 3D structure of
the packings with a spatial resolution of 30 microns? ? ? . Our
analyses have been carried out over the entire packing struc-
ture as well as over non-overlapping cubical subsets each con-
taining 4000 beads. These subsets are from the inner region of
the packings, four sphere diameters away from the container
walls. Contrary to the disordered packing, the partially or-
dered packing shows spatial structural heterogeneity (see Fig
??a). Subsets from the partially ordered packing have a wide
range of volume fractions ranging from f = 0.58 to f = 0.73.

2.2 Persistant Homology

Persistent homology? is a technique for quantifying topolog-
ical structures in data? ? . In the past ten years it has become
an increasingly useful tool for studying shape in application
areas from dynamical systems? ? to high-dimensional data-
mining? ? to digital images? ? ? ? . Homology is an algebraic
tool for studying topological structure. The sizes of the ho-
mology groups are called the Betti numbers and these quan-
tify connectivity in each dimension. For objects embedded in
three-dimensional space, the 0-dimensional Betti number, b0
is the number of pieces the object has, b1 is the number of
independent 1-dimensional loops through the space, and b2
counts the number of enclosed voids in the object. Persistent
homology extends traditional homology by tracking how the
homology groups change as an object grows.

Each homology class has two values, which are calcuated
by varying a filtration parameter associated with it (see Sup-
plimental): a birth value and a death value. It is common
practice to represent this information in a Persistence Diagram
(PD) for each dimension of homology. PDk contains all pairs
(b,d), b  d, associated with a persistent homology class in
dimension k.

The bead packing data is specified by coordinates for the
centre of each bead (and its radius), extracted from micro-CT
images. For simplicity, assume the beads are mono-disperse,
with radius r = 0.5mm, and consider the union of balls of ra-
dius a growing around each bead centre, X(a) =

S
B(x,a).

The topology of X(a) is conveniently captured by the alpha
shape, a subset of the Delaunay tessellation (DT) (see Suppli-
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Shape of Data
TDA on Materials Science

Data

Geometric Model

Algebraic Description

point cloud, atomic configuration, digital image, 
sensor network

simplicial complex, cell complex, quiver

Persistent homology, sheaf 
cohomology, category



Alpha shape
TDA on Materials Science Edelsbrunner & Mücke ‘94

: Voronoi decomp.

A(X, r) : dual of {Bi(r) � Vi | i = 1, . . . , n}Alpha shape

X2

X1

X3 X4

X5

X6

(simplicial complex)

X = {xi � Rm | i = 1, . . . , n}

Rm = [iVi

[iBi(r) = [i(Bi(r) \ Vi)

A(X, r) � A(X, s) for r < s

Nerve theorem: [iBi(r) ' A(X, r)
easier to analyze by computers

 filtration:  
changing resolution 

: point cloud
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Persistent Homology
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filtration
X1 X2 X4X3 X5

X : X1 � X2 � · · · � Xn

persistent homology

Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva

21 n

representations on An

H`(X ) : H`(X1) ! H`(X2) ! · · · ! H`(Xn)

interval decomposition (Gabriel’s Theorem)

I[b, d] : 0� · · ·� 0� K � · · ·� K � 0� · · ·� 0
Xb Xdat at

PH1(X ) � I[3, 4]

H`(X ) '
sM

i=1

I[bi, di] generator



Persistence Diagram
3. Persistent Homology

Hk(X ) �
�p

i=1 I[bi, di]

represents appearance and disappearance of  
                a topological feature at             in

Interval decomp:

I[b, d]
t = b, dbirth time death time X = {X(t)}t

t
0

� � �

b d: lifetime

Dk(X ) = {(bi, di) � R2
�0 : i = 1, . . . , p} : persistence diagram

birth

death
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d

glass liquid
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What is glass?
Not yet fully answered to “what is glass?” 

Not liquid, not solid, but something in-between 

Molecules have disordered configurations, but 

sufficient cohesion to maintain rigidity

TDA on Materials Science

temperature

liquid

supercooled 
liquid

glass

crystal
vo

lu
m

e

Further geometric understandings of atomic 

configurations are required 

Solar Energy Glass, DVD, BD, etc.
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filtrations
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All PD computations today are 
performed by CGAL, PHAT and DIPHA 

(Thanks !)

Nakamura, H. , Nishiura et al. Nanotechnology 26 (2015)



Support dim and order parameter
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glass

liquid

crystal

0-dim support results from periodic 
atomic locations of crystals

1-dim support (curves!) appears

2-dim support results from random 
atomic locations of liquids

transition

transition

TDA on Materials Science

Remark  
1. topological approach for glass transition ? 
2. I’ll talk about this later from statistical viewpoint

Nakamura, H. , Nishiura et al. Nanotechnology 26 (2015)



Geometric origins of curves

CP: primary rings generating the others

hierarchical ring structure

CT: triangles on tetrahedra

CO: three oxygen rings

BO: oxygen rings (    four)�

what are the geometric origins of 
the curves?

what characterize glass 
structures?

inverse problem!

(e.g., find optimal cycles)

TDA on Materials Science Nakamura, H. , Nishiura et al. Nanotechnology 26 (2015)



From materials science to math
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glassliquid

random topology

how different?

understand random topological features 
to characterize ordered structures

representation theory
glass compressed

how persistent?

study persistence of both spatial and 
compression senses in pressurization

inverse problem

how deformed?

develop methods to study inverse problems 
(applications: design, rigidity, etc)

topological statistics

temperature

liquid

supercooled 
liquid

glass 

vo
lu

m
e

glass 
transition

how detect?

detect glass transition and capture 
principal behaviors in statistical methods

liquid to glass



Representation and Generalized PD

birth
b d

death

b

d

birth

death

PD

• each point in PD is a hole in 
data 

• points close to diagonal are 
noisy 

• points away from diagonal are 
robustblow up balls

filtration

persistent homology

X : X1 � · · · � Xn

PH�(X ) : H�(X1)� · · ·� H�(Xn) �
�

I[b, d]

I[b, d] : 0� · · ·� 0� K � · · ·� K � 0� · · ·� 0
at Xb Xdat K : field

D�(X ) = {(b, d) � R2 appearing in }persistence diagram (PD)

key property 
interval decomposition

1 2 n Anrepresentation on       quiver
n-1

persistent moduleAn H�(X1)� H�(X2)� · · ·� H�(Xn�1)� H�(Xn) �
�

I[b, d]

interval decomposition 
is available

Applications: time series analysis, protein folding, etc

1

2

n1 2

m
persistent module (Escolar & H. Discrete Comput. Geom.)

indecomposable decomposition are not trivial!
research topics: matrix methods 
and bocs for 
(Asashiba, Escolar, Takeuchi, H)

Applications: spatio-temporal TDA

Am ⌦An

Am ⌦An

see poster for details!



Random Topology
Random simplicial complexes and its persistence diagrams

t
Erdös‒Rényi random graph (process)

· · · percolation, Erdös‒Rényi thm
Frieze’sζ(3) theorem
asymptotic behaviors, etc

Characterize stochastic properties of data

Random point process on      and its persistence diagramsRn

PD for (quasi) periodic 
configuration and its perturbation

Point process (Poisson, Cox, 
etc. ) and their PDs

characterizing PDs for softmatter 

Research Topics

⇢ ⇢ ⇢

t
random simplicial complex (process)

· · ·

higher dim. 
generalization

Generalized Frieze’sζ(3) theorem 
(H & Shirai. arXiv:1503.05669)

Research Topics
limiting theorem of PD
high dimentional Wilson algorithm

random walk on simplicial 
complex

birth-death Markov chain 
and generalized persistence

higher dim. 
generalization

⇢ ⇢ ⇢



persistence map    is differentiable

Persistent Inverse Problem
Continuation of point clouds via PDs

f

apply the continuation method in dynamical 
systems (with pseudo-inverse operator)

existence and uniqueness, bifurcation, singularity

Applications: material design, prediction of geometric structure

D = f(X)

Compressive sensing for persistent homology
X ��� C�(X) ��� D�(X)

chain cplx PDpoint cloud

find minimum representative     in a homology class

compressive sensing for    

possible to extract detailed geometric features

dim C⇤(X) � ||z⇤||0

z⇤

sparse optimization problem: 

z⇤

Gameiro, H, Obayashi. Physica D (2016)

Given initial correspondence               
and a target PD            , solveD0 ⇠ D

X 0 s.t. D0 = f(X 0)

inverse
problem

point cloud persistence
map
f

X persistence diagramD



Topological Statistics
Statistical reliability of PDs

Lack of sample data for statistics
Research topics background

(ex: soft-matter experiments in  
limited situation)

Reliability of PDs?

bootstrap method for PDs using  

original PH

resampling PH

indecomposable decom. provides reliability of PD!

H⇤(Y1) H⇤(Y2) H⇤(Y3) . . . H⇤(Yn)

H⇤(X1) H⇤(X2) H⇤(X3) . . . H⇤(Xn)

A2 ⌦An

Kernel method: Statistics for PDs

(SVM, PCA, change point detects, 
regression, etc)

research topics 
Develop kernel 
methods for PDs  

(Kusano, Fukumizu, H)

Statistical methods for PDs

classification???

• kernel method for 
PDs: persistence 
weighted Gaussian 
kernel (PWGK) 

• stability theorem  
• vectorization of PD

 background

see poster for details!

kernel Fisher discriminant
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Glass transition temperature
topological statistics
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GTT interval becomes large.

Convention to determine GTT in physics:

kernel change point detection 
and kernel PCA based on 

PWGK

G. Kusano, K. Fukumizu, Y.H., ICML (2016)

from liquid to glass



Glass transition temperature
topological statistics

-19

-18.8

-18.6

-18.4

-18.2

-18

 1500  2000  2500  3000  3500  4000
En

th
al

py
 /N

 e
V

T K

Tg Tm

cooling
heating from crystal

glass transition
occurs

liquid

glassen
th

al
py

˚C

Since two slopes are close, 
GTT interval becomes large.

Convention to determine GTT in physics:

kernel change point detection 
and kernel PCA based on 

PWGK

kernel Fisher discriminant

0 20 40 60 801 80401
3100K

-0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Glass: KPCA, PWGK

kernel PCA

glass

liquid

Co starts to appear!
red: > 3100K

blue: < 3100K

G. Kusano, K. Fukumizu, Y.H. ICML (2016)



Collaborators

random topology topological statistics

materials TDA

inverse problem

Tomoyuki Shirai Kenji Fukumizu 
Genki Kusano

representation
Hideto Asashiba Ippei Obayashi

Hirata, Nakamura, Matsue, Saadatfar, Ichinomiya, Nakajima 
Kotani, Nishiura, Kramar, Kohara, etc


