Topological Data Analysis on Materials Science 材料科学への位相的データ解析

Yasuaki Hiraoka

WPI-AIMR, Tohoku

JST CREST 「ソフトマター記述言語の創造に向けた位相的データ解析理論の構築」

- **1. Overview of TDA**
- 2. Persistent homology, persistence diagram
- 3. Materials TDA: glass analysis, materials info, proteins
- 4. Building mathematics from materials science: probability, representation, statistics, inverse problem

Collaborators

random topology

Tomoyuki Shirai

topological statistics

Kenji Fukumizu Genki Kusano

representation

Hideto Asashiba

inverse problem

Ippei Obayashi

materials TDA

Hirata, Nakamura, Matsue, Saadatfar, Ichinomiya, Nakajima Kotani, Nishiura, Kramar, Kohara, etc

Topological Data Analysis

TDA starts from 21st century for analyzing complicated data geometrically and topologically

Data Has Shape, Shape Has Meaning, Meaning Drives Value

Gunnar Carlsson's Gr. (math. Stanford, AYASDI)

- bigdata, social network, medical science, finance, etc

Robert Ghrist's Gr. (math. UPenn)

- network flow, sensor network

Konstantin Mischaikow's Gr. (math. Rutgers)

- complex fluid, time series data

Our group in AIMR

- materials science

Materials TDA in AIMR

Edelsbrunner & Mücke '94

X4

X5

Хз

X2

- $X = \{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\}$: point cloud
- $\mathbf{R}^m = \cup_i V_i$: Voronoi decomp.

•
$$\cup_i B_i(r) = \cup_i (B_i(r) \cap V_i)$$

• Alpha shape $\mathcal{A}(X, r)$: dual of $\{B_i(r) \cap V_i \mid i = 1, ..., n\}$ (simplicial complex)

• Nerve theorem: $\cup_i B_i(r) \simeq \mathcal{A}(X, r)$

easier to analyze by computers

• $\mathcal{A}(X, r) \subset \mathcal{A}(X, s)$ for r < s

filtration: changing resolution

Persistence Diagram

Interval decomp:
$$H_k(\mathcal{X}) \simeq \bigoplus_{i=1}^p I[b_i, d_i]$$

What is glass?

- * Not yet fully answered to "what is glass?"
- * Not liquid, not solid, but something in-between
- ***** Molecules have disordered configurations, but
 - sufficient cohesion to maintain rigidity
- ***** Further geometric understandings of atomic
- configurations are
 Solar Energy Glass, DVD, BD, etc.

crystal

liquid

supercooled liauid

glass

Atomic configurations of silica (SiO2)

Nakamura, H., Nishiura et al. Nanotechnology 26 (2015)

Ist-Persistence diagrams of silica

Nakamura, H., Nishiura et al. Nanotechnology 26 (2015)

Support dim and order parameter

Nakamura, H., Nishiura et al. Nanotechnology 26 (2015)

Geometric origins of curves

Representation and Generalized PD

Random Topology

Characterize stochastic properties of data

Research Topics

• limiting theorem of PD

- random walk on simplicial complex
- birth-death Markov chain and generalized persistence

• high dimentional Wilson algorithm

Random point process on \mathbb{R}^n and its persistence diagrams

Persistent Inverse Problem

Continuation of point clouds via PDs

• Given initial correspondence D = f(X)and a target PD $D' \sim D$, solve

X' s.t. D' = f(X')

- persistence map f is differentiable
- apply the continuation method in dynamical systems (with pseudo-inverse operator)
- existence and uniqueness, bifurcation, singularity
- Applications: material design, prediction of geometric structure

Compressive sensing for persistent homology

 $X \longmapsto C_*(X) \longmapsto D_*(X)$ point cloud chain cplx PD

- find minimum representative z_* in a homology class
- sparse optimization problem: dim $C_*(X) \gg ||z_*||_0$

- compressive sensing for z_{*}

• possible to extract detailed geometric features

Gameiro, H, Obayashi. Physica D (2016)

Topological Statistics

Statistical reliability of PDs

topological statistics

G. Kusano, K. Fukumizu, Y.H., ICML (2016)

Glass transition temperature

Convention to determine GTT in physics:

topological statistics

G. Kusano, K. Fukumizu, Y.H. ICML (2016)

Glass transition temperature

Convention to determine GTT in physics:

Collaborators

random topology

Tomoyuki Shirai

topological statistics

Kenji Fukumizu Genki Kusano

representation

Hideto Asashiba

inverse problem

Ippei Obayashi

materials TDA

Hirata, Nakamura, Matsue, Saadatfar, Ichinomiya, Nakajima Kotani, Nishiura, Kramar, Kohara, etc