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Thermodynamic Entropy  
as a Noether Invariant 



Thermodynamics 

• 0th law:  existence of equilibrium state 
 

• 1st law: 𝑑𝑑 = 𝑑′𝑄 + 𝑑′𝑊 
 

• 2nd law: 𝑆𝑓 ≥ 𝑆𝑖    
 

• Entropy (by Clausius):  

𝑆 = 𝑆0 + �
𝑑𝑄
𝑇  

• Adiabatic invariance 
𝑆𝑓 = 𝑆𝑖  

 
 

slowly  
= quasi-static 

adiabatic wall heat work 



Thermodynamic Entropy  
as a Noether Invariant 



Noether theorem in Mechanics 

         Symmetry ⇔ Conservation law  

𝛿𝐺𝐼 = 0 for any 𝑞� ⇔ 𝑑
𝑑𝑑
𝑂𝐺|∗ = 0 for solutions 𝑞�∗ 

𝐼 𝑞� = � 𝑑𝑑

𝑑𝑓

𝑑𝑖

𝐿 𝑞 𝑑 , �̇� 𝑑  

 
  

 

under 𝑞� → 𝑞� + 𝛿𝐺𝑞� 

𝑑 

𝑞 

𝑞� 
𝑞� + 𝛿𝐺𝑞� 

Example 
𝑑 → 𝑑 + 𝜖 ⟺ 𝑑 
𝑥 → 𝑥 + 𝜖 ⟺ 𝑝𝑥 



Thermodynamic Entropy  
as a Noether Invariant 

Adiabatic invariance: 𝑆𝑖 = 𝑆𝑓 

Symmetry ⇔ Conservation law  

today’s  
question 



Thermodynamic Entropy  
as a Noether Invariant 

Black hole Entropy 

𝑆𝐵𝐵 =
𝑐3𝐴
4𝐺𝐺

  
 
       Black-hole entropy ⇔ diffeomorphism invariance  

𝑆𝐵𝐵 =
2𝜋
𝐺
� 𝑑𝐴
𝐴𝐴𝐴𝐴

𝑄𝝃. 

BH 

[1973 Bekenstein, 1974 Hawking] 

[1993 Wald] 

Adiabatic invariance: 𝑆𝑖 = 𝑆𝑓 

today’s  
question 

Symmetry ⇔ Conservation law  



Thermodynamic Entropy  
as a Noether Invariant 

←macroscopic 

↑microscopic 

⇒Let’s first find the microscopic description  
of the adiabatic invariance of entropy. 

Adiabatic invariance: 𝑆𝑖 = 𝑆𝑓 

today’s  
question 

Symmetry ⇔ Conservation law  



• Consider 𝑁 classical particles with short-range interaction in 
a box of volume 𝑉. 
 

 
• The action 

𝐼 𝑞� = � 𝑑𝑑

𝑑𝑓

𝑑𝑖

𝐿 𝑞 𝑑 , �̇� 𝑑 ,𝑉 𝑑  

 
 
 
• The energy 

𝑑 𝑞, �̇�,𝑉 = �̇�
𝜕𝐿
𝜕�̇� − 𝐿 

 
 

 
 

Volume:𝑉(𝑑) 

adiabatic wall 

𝑞(𝑑) ∈ ℝ3𝑁: a collection of coordinates of N particles 
𝑉 𝑑 : time-dependent volume ⇒A protocol (functional form of 𝑉(𝑑)) is fixed. 

Example: 𝐿 = ∑ 1
2
𝑚�̇�𝑖𝑁

𝑖=1 − ∑ 𝑈𝑖𝑖𝑑 𝒓𝑖 − 𝒓𝑗𝑖<𝑗 − ∑ 𝑈𝑊𝐴𝑊𝑊 𝒓𝑖;𝑉(𝑑)𝑁
𝑖=1  

Setup 



micro-canonical ensemble ~ typical behavior  
 
 
 
 

Boltzmann Entropy 
• Consider the Hamiltonian formulation:  

                a phase space coordinate Γ = 𝑞,𝑝  with 𝑝 ≡ 𝜕𝜕
𝜕�̇�

   
                Hamiltonian  𝐻 Γ,𝑉 = 𝑑(𝑞, �̇� 𝑞,𝑝,𝑉 ,𝑉) 
 
• The microscopic definition of entropy by Boltzmann:  

𝑆 𝑑,𝑉 = log
Ω 𝑑,𝑉
𝑁!

   
 
• The identity of 𝑆 𝑑,𝑉 : 

𝑑𝑆 = 𝛽𝑑𝑑 + 𝛽𝛽𝑑𝑉  
 

Thermodynamic pressure 

𝛽 ≡ −
𝜕𝐻
𝜕𝑉

𝐸,𝑉

𝑚𝑚

 
𝐴 𝐸,𝑉

𝑚𝑚 ≡
1

Σ 𝑑,𝑉 ∫ 𝑑Γ𝐴 Γ 𝛿 𝑑 − 𝐻 Γ,𝑉  

  Σ E,𝑉 ≡ ∫ 𝑑Γ𝛿 𝑑 − 𝐻 Γ,𝑉  

Inverse temperature 

𝛽 𝑑,𝑉 ≡
Σ 𝑑,𝑉
Ω 𝑑,𝑉 =

𝜕𝑆
𝜕𝑑 

Ω 𝑑,𝑉 ≡ �𝑑Γ𝜃 𝑑 − 𝐻 Γ,𝑉  

𝑑 
𝑞 

𝑝 

～microscopic randomness of a system 

The first law 

𝑑 

𝜌 =
𝛿
Σ 



Bridge between micro and macro 
• We are interested in quasi-static time evolution of the 

macroscopic system. 
⇒Consider a class of phase-space trajectories consistent with 
quasi-static processes in thermodynamics.    

 
 
 

𝑞 

𝑝 

a quasi-static process 

(𝑑𝑖 ,𝑉𝑖) 

(𝑑𝑓 ,𝑉𝑓) 

𝑉 

𝑑 

thermodynamically  
consistent trajectories 

Γ(t) 

<thermodynamic state space> <phase space> 

thermodynamically consistent! 

non-consistent 



Thermodynamically consistent trajectory 

The conditions of thermodynamically consistent trajectory Γ(t):   
1    𝑑 𝑑 = 𝑑�(𝜏) 

2  � 𝑑𝜏

𝜏𝑓

𝜏𝑖

𝑑𝑉�
𝑑𝜏

𝜕𝐻
𝜕𝑉

−
𝜕𝐻
𝜕𝑉

𝐸�(𝜏),𝑉�(𝜏)

𝑚𝑚

= 0 

 
in the quasi-static limit. 
 
 

𝑑 𝑑 = 𝐻 Γ 𝑑 ,𝑉 𝑑  

quasi-static limit  
Consider a parameter 𝑉 𝑑 = 𝑉�(𝜖𝑑),  
introduce 𝜏 = 𝜖𝑑,   
and  take 𝜖 → 0 with 𝜏𝑖 = 𝜖𝑑𝑖 , 𝜏𝑓 = 𝜖𝑑𝑓 fixed. 

⇒ 𝑑𝑉
𝑑𝑑

= 𝜖 𝑑𝑉
�

𝑑𝜏
= 𝜖𝒪 1 ≪ 1 

mechanical work = thermodynamic work 

a quasi-static process 

(𝑑𝑖 ,𝑉𝑖) 

(𝑑𝑓 ,𝑉𝑓) 

𝑉 

𝑑 



Microscopic description of  
adiabatic invariance of entropy 

𝑆 𝑑𝑓 − 𝑆 𝑑𝑖 = � 𝑑𝑑

𝑑𝑓

𝑑𝑖

𝑑𝑆 𝑑
𝑑𝑑

 

 

= � 𝑑𝑑

𝑑𝑓

𝑑𝑖

𝛽
𝑑𝑑
𝑑𝑑

− �̇�
𝜕𝐻
𝜕𝑉

𝐸(𝑑),𝑉(𝑑)

𝑚𝑚

 

= � 𝑑𝜏

𝜏𝑓

𝜏𝑖

𝛽
𝑑𝑉�
𝑑𝜏

𝜕𝐻
𝜕𝑉

−
𝜕𝐻
𝜕𝑉

𝐸�(𝜏),𝑉�(𝜏)

𝑚𝑚

 

    = 0  
 
 

Thermodynamically consistent trajectory 

� 𝑑𝜏

𝜏𝑓

𝜏𝑖

𝑑𝑉�
𝑑𝜏

𝜕𝐻
𝜕𝑉

−
𝜕𝐻
𝜕𝑉

𝐸�(𝜏),𝑉�(𝜏)

𝑚𝑚

= 0 

𝑑𝑆 = 𝛽𝑑𝑑 − 𝛽
𝜕𝐻
𝜕𝑉

𝐸,𝑉

𝑚𝑚

𝑑𝑉 

𝑑𝑑 = 𝛿𝑄 + 𝛿𝑊 

Let’s consider time evolution of  
S 𝑑 = 𝑆 E Γ 𝑑 ,𝑉 𝑑 ,𝑉 𝑑   

in the quasi-static limit 𝜖 → 0. 

 
𝑑𝑑(𝑑)
𝑑𝑑 =

𝜕𝐻
𝜕Γ Γ̇ +

𝜕𝐻
𝜕𝑉 �̇� =

𝜕𝐻
𝜕𝑉 �̇� 

 
 

“heat” “work” 

Adiabatic  
condition 

⇒We will find the symmetry 
corresponding to  this conservation 
law in the Noether theorem.  



• The Noether theorem in text books 

     𝛿𝐺𝐼 = 0 for any 𝑞� ⇔ 𝑑
𝑑𝑑
𝑂𝐺|∗ = 0 for solutions 𝑞�∗ 

 
 
 

• A generalized Noether theorem 

  𝛿𝐺𝐼 = ∫ 𝑑𝑑𝑑𝑓
𝑑𝑖

𝑑𝑓(𝑞,�̇�,𝑑)
𝑑𝑑

 for any 𝑞�  

                                                   ⇔ 𝑑
𝑑𝑑
𝑂𝐺|∗ = 0 for solutions 𝑞�∗ 

  

[Trautman 1967, Sarlet-Cantrijin 1981] 

generalized 

A generalized Noether theorem 

under 𝑞� → 𝑞� + 𝛿𝐺𝑞� 

under 𝑞� → 𝑞� + 𝛿𝐺𝑞� 



A non-uniform time translation  
• Consider a non-uniform time translation 

𝑑 → 𝑑′ = 𝑑 + 𝜂𝜉(𝑞, �̇�, 𝑑) 
𝑞 𝑑 → 𝑞′ 𝑑′ = 𝑞 𝑑  
𝑉 𝑑 → 𝑉′ 𝑑′ = 𝑉 𝑑′  

⇒ 𝛿𝐺𝐼 = 𝜂 � 𝑑𝑑

𝑑𝑓

𝑑𝑖

−ℇ�̇� +
𝑑
𝑑𝑑 𝜉𝑑  

• Suppose that there exist 𝜉(𝑞, �̇�, 𝑑) and 𝜓 𝑞, �̇�, 𝑑  s.t.  

𝛿𝐺𝐼 = 𝜂 � 𝑑𝑑

𝑑𝑓

𝑑𝑖

𝑑𝜓
𝑑𝑑  

⟹−� 𝑑𝑑

𝑑𝑓

𝑑𝑖

ℇ �̇� 𝜉 = 𝜓 + 𝜉𝑑 𝑑𝑖
𝑑𝑓   

                           
 

𝜂: infinitesimal parameter 

(←just relabeling) 

ℇ ≡
𝜕𝐿
𝜕𝑞

−
𝑑
𝑑𝑑
𝜕𝐿
𝜕�̇�

 

(←The protocol is fixed.) 

⇒ 𝜓 + 𝜉𝑑  
    is conserved on 𝑞∗ 𝑑 !  



Derivation of the symmetry 1 
• Let’s derive the symmetry for adiabatic invariance of entropy.  
• The condition of symmetry is non-trivial: 

−� 𝑑𝑑

𝑑𝑓

𝑑𝑖

ℇ�̇�𝜉 = � 𝑑𝑑

𝑑𝑓

𝑑𝑖

𝑑
𝑑𝑑

𝜓 + 𝜉𝑑  

• Consider now  
𝜉 = Ξ 𝑑 𝑞, �̇�,𝑉 ,𝑉 , 𝜓 = Ψ 𝑑 𝑞, �̇�,𝑉 ,𝑉  

and restrict trajectories to thermodynamically consistent ones.  
 
⇒ The condition becomes 

Ξ 𝑑𝑑 − 𝑑𝑉
𝜕𝐻
𝜕𝑉

𝐸,𝑉 

𝑚𝑚

= 𝑑(Ψ + EΞ) 

⇒ The solution is  
Ξ = ℱ 𝑆 𝛽 

 

←Symmetry emerges for  
thermodynamically  
consistent trajectories! 



• The Noether invariant is 

Ψ + 𝑑Ξ = � 𝑑𝑆′
𝑆

ℱ 𝑆′  

• Assume that this is extensive.   
 
 
 
 
 
 
 
 
 

Derivation of the symmetry 2 

matter 
𝑀𝐴 

matter 
𝑀𝐴 

scaled copy 
𝑉 → 𝜆𝑉 
𝑁 → 𝜆𝑁 

Ψ + 𝑑Ξ → 𝜆(Ψ + 𝑑Ξ) 
𝑑 → 𝜆𝑑 

Ψ → 𝜆Ψ 
Ξ → Ξ Ξ𝛽−1 = ℱ 𝑆  is intensive 

and independent of 𝑉. intensive 𝛽 → 𝛽 



• Here we can express   
ℱ 𝑆 = ℱ� 𝑠;𝑀 . 

 
• Consider a composite system. 

 
 
 
 

• If 𝑀𝐴 = 𝑀𝐵 = 𝑀 
⇒ℱ� 𝑠𝐴;𝑀 = ℱ� 𝑠𝐵;𝑀  for any 𝑠𝐴, 𝑠𝐵 
⇒ℱ� 𝑠;𝑀 = 𝑐 𝑀  

 
• If 𝑀𝐴 ≠ 𝑀𝐵 
⇒ 𝑐 𝑀𝐴 = 𝑐(𝑀𝐵) for any 𝑀𝐴,𝑀𝐵 
⇒ 𝑐 𝑀 = 𝑐∗ 

 
 

 
 

Derivation of the symmetry 3 

matter 𝑀𝐵 matter 𝑀𝐴 

𝑠 ≡
𝑆
𝑁

 material  
dependence 

𝛽𝐴 = 𝛽𝐵 
ΞA = Ξ𝐵 

ℱ� 𝑠𝐴;𝑀𝐴 = ℱ� 𝑠𝐵;𝑀𝐵  
Ξ𝛽−1 = ℱ 𝑆  



• Thus, we obtain  
Ξ𝛽−1 = ℱ = 𝑐∗ 

 
⇒  𝑐∗ ∝ 𝐺 

⇒Our framework based on classical theory has led 
to the existence of the Planck constant. 

 
• Therefore, we have  

Ξ = 𝑎𝐺𝛽 

Ψ + 𝑑Ξ = � 𝑑𝑆′
𝑆

ℱ 𝑆′ = 𝑎𝐺(𝑆 + 𝑏𝑁) 

 
 
 

Derivation of the symmetry 4 

[time]×[energy] 
= [action] 

independent of state and material 
= universal constant 

ℱ = 𝑐∗ = 𝑎𝐺 



• In the macroscopic system, the symmetry 
𝑑 → 𝑑 + 𝜂𝐺𝛽 𝑑(𝑑),𝑉 𝑑  

emerges for “thermodynamically consistent 
trajectories”.  
 
• Then, the  Noether invariant  is  

Ψ + 𝑑Ξ = 𝐺 𝑆 + 𝑏𝑁 . 
 

• This provides a new and unique 
characterization of entropy.  

Main result 



Various aspects of entropy  
on mathematics 

Math connects different physics and makes new ideas. 

 
 
 
 
 

Mathematics 

Thermodynamics 

Black Hole 

Entanglement 

Statistical Mechanics Information 

Noether invariant 

Entropy 

Thank you very much! 
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