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Thermodynamics

Oth law: existence of equilibrium state

1stlaw: dE =d'Q + d'W
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Noether theorem in Mechanics

Symmetry < Conservation law
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Adiabatic invariance: §; = S¢
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Adiabatic invariance: §; = S¢
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Symmetry < Conservation law
?
Black hole Entropy [1973 Bekenstein, 1974 Hawking]
c3A
Spy = 4GHh

Black-hole entropy < diffeomorphism invariance

2T [1993 Wald]
Area




Adiabatic invariance: 5; = Sy ¢macroscopic
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= Let’s first find the microscopic description
of the adiabatic invariance of entropy.



Setup

 Consider N classical particles with short-range interaction in
a box of volume V. _adiabatic wall

D

Volume:V (t)

e The action

q(t) € R3V: a collection of coordinates of N particles
V(t): time-dependent volume =>A protocol (functional form of VV (t)) is fixed.

__________________________________________________________________________________

e The energy



Boltzmann Entropy

e Consider the Hamiltonian formulation:

" aphase space coordinate T’ = (q,p) withp = 62

Hamiltonian H(I',V) = E(q,q(q,p,V),V)

e The microscopic definition of entropy by Boltzmann:

Q(E, V) ——t—

S(E,V) =log T E
~ microscopic randomness of a sys:tem Q(E,V) = f dro(E — H(T,V))
e Theidentity of S(E,V): ;
The first law | dS = ,B dE + ,BP av averse ten;p(%ralfl)lre S
-~ Q(E,V) OE

Thermodynamic pressure

EV
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Bridge between micro and macro

 We are interested in quasi-static time evolution of the
macroscopic system.

= Consider a class of phase-space trajectories consistent with
guasi-static processes in thermodynamics.

E
A (Ef’ Vf) AD
thermodynamically
a quasi-static process “ consistent trajectories
r'(t)
<thermodynamic state space> <phase space>

. s d thermodynamically consistent!

non-consistent



Thermodynamically consistent trajectory

quasi-static limit AE E.V

Consider a parameter V(&) = V(et), (Er, V)

introduce T = €t, o

and take € — 0 with 1; = €t;, Tr = €t fixed. a quasi-static process
dv av

ﬁE—EE—EO(l) <<1 (Ei' i) 5 V

The conditions of thermodynamically consistent trajectory I'(t):

(1) E() = E(7)

Tf _ mc
dV |0H oH
(2) | dt —
dt
Ti

v \ov

E(T),V(7)]
mechanical work = thermodynamic work
in the quasi-static limit.

E(t) = H(T (), V(D)




Microscopic description of
adiabatic invariance of entropy

Let’s consider time evolution of

S(t) = 5 (E(T(®), v(®),v(®))

in the quasi-static limite — 0.

S(tr) —S(t) = j dt —— S(t)

“heat” “work”
dE(t)_aH. OH . OH .

AdiabaticY
condition dE = 6Q + W

mc
0H
dS = BdE —,B<—> dVv
av v \

o Tt T’

tf i mc
_ J gt dE v oH
B B dt 1%
t I E(t),V(t) |
Tf _| mc ]
_ ] dV |0H oH
=) Bl v
Ti I E(7),V(7)]

Thermodynamically consistent trajectory
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f 4V |oH _ [oH o
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=We will find the symmetry
corresponding to this conservation
law in the Noether theorem.



A generalized Noether theorem

e The Noether theorem in text books

d
Ocl = 0 forany g & —

17 OG |* = 0 for solutions §.
underg —» g + 6,4

A generalized Noether theorem
t d q,t [Trautman 1967, Sarlet-Cantrijin 1981]
661 = ft-f dt f(gtq ) for any g
l

underq = q + 654

d
< p O |>l< = 0 for solutions §,




A non-uniform time translation

e Consider a non-uniform time translation
t >t =t+18(q q,t)

_,{q(t) - q'(t) = q(t)
V(t) > V' (t) =V(t)

tf d
= 0c1 =1 f dt [—eq +E(€E)]
ti

n: infinitesimal parameter
(&just relabeling)
(¢The protocol is fixed.)

e Suppose that there exist £(q,q,t) and Y(q, g,t) s.t.

93
ay
L

=Y +<E
is conserved on g, (t)!




Derivation of the symmetry 1

e Let’s derive the symmetry for adiabatic invariance of entropy.
 The condition of symmetry is non-trivial:

Ly Ly ]
—f dt EGg¢ = f dta(lp+€E)
i i

e Consider now

=EZ(E(q,q,V),V), Yy=%¥(E(Q@qV)V)
and restrict trajectories to thermodynamically consistent ones.

= The condition becomes

a mc
=|dE — av <—> = d(¥ + EE)

= The solution is
<Symmetry emerges for

= = :F(S),B thermodynamically
consistent trajectories!




Derivation of the symmetry 2

e The Noether invariant s

S
Y + EE = f ds' F(S")

e Assume that this is extensive.

: scaled copy :

P Y

)
e e

intensive

V - AV :

Y+ EE - A(Y + EB)
E - AE

)
p—p

matter - matter
MA

281 = F(S)is intensive
and independent of V.




Derivation of the symmetry 3

* Here we can express
s = 1\2]/ \material
dependence

e Consider a composite system.

e | EA = EB matter M,  matter Mp
BT =FO) “A = 5B

== F(s4; My) = F(sp; Mp)
o IfMA = MB =M

=F(sy; M) = F(sg; M) for any sy, sz
=>F(s;M) = c(M)

i |fMA +* MB

= c(My) = c(Mg) forany M,, Mg
= c(M) = c,



Derivation of the symmetry 4

e Thus, we obtain

~n—1 __ _
[time] X [energy] independent of state and material
= [action] = universal constant
= |c, X h

= Our framework based on classical theory has led
to the existence of the Planck constant.

e Therefore, we have
E:ahﬁ E.‘F=c*=ah§

_________________________

S
Y + EE = f dS'F(S") = ah(S + bN)



Main result

* |[n the macroscopic system, the symmetry

t > t+nhB(E@), V(D))

emerges for “thermodynamically consistent
trajectories”.

e Then, the Noether invariant is
Y+ EE = h(S + bN).

* This provides a new and unique
characterization of entropy.



Various aspects of entropy
oh mathematics

Black Hole Noether invariant

Thermodynamics w Entanglement

Statistical Mechanics Information

——... R
P

Matﬁanatics

Math connects different physics and makes new ideas.

Thank you very much!
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