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Introduction 
-  Metabolic network (代謝ネットワーク) : 

reactions producing energy, constructing cell 
components  

 
      node: metabolic molecules, edge: reactions 

-Each reaction is catalyzed by specific enzyme　 
（酵素によって触媒).　 

KEGG PATHWAY: Glycolysis / Gluconeogenesis - Ho... http://www.genome.jp/kegg-bin/show_pathway?org_...
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enzyme 

substrates product 

- How each enzyme influences the system? 
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Introduction 
Can we understand knockout 
experiment theoretically? 

We want to construct theoretical frameworks for these 
experiments.  
However, precise kinetics are unknown. 
 
 

 
 Experimental approach:  撹乱実験 (knockdown experiments) 

Law of Localization in Chemical Reaction Networks

Takashi Okada1 and Atsushi Mochizuki1,2
1Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan

2CREST, JST 4-1-8 Honcho, Kawaguchi 332-0012, Japan

In living cells, chemical reactions connect and form complex networks, like metabolic pathways.
We developed a theory to predict sensitivity, i.e. responses of concentrations and fluxes to pertur-
bations of enzymes, from network structure alone. Responses turn out to exhibit two characteristic
patterns, localization and hierarchy. We found a general theorem connecting sensitivity with net-
work topology directly and explaining the characteristic patterns perfectly. Our results imply that
network topology can be origin of biological robustness. The theory allows us to determine real
networks from experimental measurements.

PACS numbers: 02.10.Ud, 47.27.ed, 87.10.-e

In living cells there are many different chemical reac-
tions, each of which is mediated by organic catalysts,
enzymes. These reactions are not independent, but con-
nected by sharing products and substrates, and form
complex networks. The dynamics of chemical concen-
trations are considered to be the origin of physiological
functions of the cells. However, the dynamical behavior
based on the network has not been understood well.

One of experimental approaches to understand the
property of such huge network is sensitivity analysis
where amount/activity of enzymes mediating each reac-
tion are modified and responses of the system (concen-
trations of the chemicals in the system) are measured [1].
However, the results obtained from such experiments are
very difficult to interpret, because theoretical criteria to
evaluate the results of such perturbation analysis from
network structures are not established.

FIG. 1. Sensitivity analysis. After the amount/activity of
an enzyme protein is decreased, the concentration change of
metabolites are measured.

There are other difficulties to understand dynamical
behaviors of chemical reaction systems in biology. First,
although huge information of reaction networks is avail-
able on many databases such as KEGG [2], Reactome [3]
and BioCyc [4], these databases provide no more than
knowledge of identified reactions in the history of bio-
chemistry. It is strongly possible that the information
is incomplete, including many unidentified reactions or
regulations. Second, in spite of the recent progress in
biosciences, it is still difficult or almost impossible to
determine the quantitative details of dynamics, such as
precise functions for reaction rates, important parameter
values, or initial states. One fragmental knowledge of dy-
namics is the time scale, which is typically of the order
of ten seconds or minutes for metabolic reactions. It is

often assumed that the dynamics of metabolite networks
are at steady states with constant input flux to chemicals
like glucose [5–8].
In the present study, in order to circumvent these dif-

ficulties, we introduce a mathematical method, named
structural sensitivity analysis [13, 14], to determine re-
sponses of chemical reaction systems to the perturbation
of enzyme amount/activity based only on network struc-
ture. From the analyses we found that the qualitative
responses at a steady state is determined from informa-
tion of network structure only. We also found that re-
sponse patterns, e.g. distribution of nonzero responses of
chemical concentrations in the network, exhibit two char-
acteristic features, localization and hierarchy depending
on the structure of networks and position of perturbed
reactions. Finally we found a general theorem connecting
the network topology and the response patterns directly,
and governing the characteristic patterns of responses.
This theorem, which we call the law of localization, is not
only theoretically important, but also practically useful
for examining the real biological network systems based
on experimental results. In the context of adaptation,
there were some previous studies, which reported con-
fined nonzero responses in specific reaction systems [9–
12]. However, they did not find general laws of such
response patterns, nor any topological conditions.
We study the concentration change in a reaction sys-

tem under perturbation of reaction rate parameters, as-
suming that the system is in a steady state [13, 14]. We
label chemicals by m (m = 1, · · · ,M) and reactions by
j (j = 1, · · · , R). In general, a state of the system is spec-
ified by the concentration xm(t) and obeys the following
differential equations [15, 16]

dxm

dt
=

R∑

i=1

νmiWi(ki;x). (1)

Here, the matrix ν is called a stoichiometric matrix. The
function Wi is called a flux, which depends metabolite
concentrations and also on a reaction rate parameter ki.
The reaction rate corresponds to amount/activity of en-
zyme mediating the reaction. We do not assume specific

・Novel method determining the response from 
network structures alone.  
・Theorem connecting the response with local 
network structures. 
�

perturbed  
enzyme  

 molecule 



We found … 

 
(1)  Network structure determines qualitative  
responses to perturbations.  
 
(2) Patterns in responses.  

 - localization and hierarchy 
 
(3) A theorem connecting network topology  

 and system behaviors.  
 
(4) Prediction of missing reactions in network 
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1. Method 
 
2. Example 
 
3. Law of localization 
 
4. Toward elucidating a true network 
 

OUTLINE 



:concentration of molecule m 

:flux of reaction i (fn. of substrates) 

: parameter such as enzyme amount 
Stoichiometric matrix 

Dynamics of Chemical Reactions 

A"""""""""""""""""""""""B"""""""""""""""�
1� 2� 4�

3�

C�

example 

stoichiometric matrix 

d

dt

0

@
xA

xB

xC

1

A =

0

@
1 �1 0 0
0 1 1 �1
0 1 �1 0

1

A

0

BB@

W1(k1)
W2(k2, xA)
W3(k3, xC)
W4(k4, xB)

1

CCA
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E.g.  

However, we do not assume specific  
kinetics 



※Network structure determines 
 non-zero distribution of A matrix. 

flux 
sub-mat. 

Q.#How#do#concentra.ons#(at#steady#state)#change#
#under#enzyme#knockdown#(#of#reac.on#j)?�

A. This can be answered from network structure alone！ 
•  Steady state condition 

X

i

Smi Wi(ki � �ij�k, x+ �x) = 0

(before)�

(after)�



Example"of"a"small"network�

A        B         C     ker1 　ker2 
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5 

invert 1 
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3 
4 
5 

perturbed  
reaction 

A B 
1 2 3 

4 

5 
C 

　　ΔA      　　   ΔB     　ΔC  　Δker1 Δker2 

�kerS

※1. 行列Aのノンゼロ分布はネットワークのみから決定可能 
※2. knockdownは微小変化でなくてもOK 

A. 定性的にはネットワーク構造のみから決定できる 

(before)�

(after)�

flux        の変化 

•  定常状態 (十分時間が経過して時間変化がない状態) 

Q. 定常状態 における代謝物の濃度(　)やフラックス(　 )は 
反応 jの撹乱(knockdown)のもとでどのように変化するか？ 



Responses"to"enzyme"perturbaJon"are"localized�
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nonzero response to perturbation of reaction 4 should be
limited within Γ4. Actually the response in the 4th col-
umn in (10) is consistent with this prediction. Similarly,
the response to perturbation of reaction 6 should be ex-
plained by Γ5. This prediction is consistent with the
calculation result in the sixth column in (10).

Example 3: The network has 14 buffer-
ing structures, listed in SM. To see the origin
of response hierarchy, we focus on the three
buffering structures colored in FIG. 3; Γ10 =
({C,E,G,H}, {5, 6, 9, 11, 12}) (with λ(Γ10) = −4 +
5 − 1 = 0), Γ11 = ({C,D,E,G,H},{5, 6, 7, 8, 9, 11, 12})
(with λ(Γ11)= −5 + 7 − 2 = 0), and Γ12 =
({C,D,E, F,G,H, I, J}, {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15})
(with λ(Γ12)= −8 + 11 − 3 = 0). Each of these three
explains the response pattern under perturbation of re-
action 5, 8, and 10 (or 13), respectively, and they satisfy
the inclusion relation, Γ10 ⊂ Γ11 ⊂ Γ12. Accordingly, we
can see from FIG. 3 (Right) that these response patterns
satisfy an inclusion relation.

In this way, we can understand all of the observed pat-
terns from network topology by using the law of local-
ization. In short, the first characteristic, localization, is
understood from existence of buffering structures. The
second property, hierarchy, is understood as the nest of
the buffering structures.

FIG. 4. E. coli network. (Adopted from [1]).

FIG. 5. The response hierarchy of E. coli network.

Finally, as an application to real biological networks,
we examine the carbon metabolism pathway of E. coli.
The carbon metabolism is a major part of energy acqui-
sition process, and the basic structures of the networks
are shared between bacteria and human beings. FIG.
4 shows the network [1], including 28 metabolites and
46 reactions, and FIG . 5 shows the response hierar-
chy (see SM for the detail). Again, the response pat-
terns show the two characteristic features, localization

and hierarchy. The network has 17 buffering structures,
and the existence and the nest of them explain the two
characteristic features perfectly. We mention that some
of the buffering structures, which are of course defined
from network topology, are surprisingly overlapping to
biologically identified sub-circuits, the pentose phosphate
pathway (yellow in FIG. 4, 5), the tricarboxylic acid cy-
cle (blue) and the glycolysis (green). As discussed below,
this correspondence may be understood from an evolu-
tional point of view by considering the advantage of dy-
namical property of buffering structures.
Now, we discuss the biological significances of buffer-

ing structures (and nest of them) in two different levels.
The first discussion is on the physiological importance. A
buffering structure prohibits influence of given perturba-
tion from expanding to the outside, like a “firewall”. In
other words, it is a substructure with robustness emerg-
ing from the network topology. For example, the carbon
metabolism network of E. coli possesses multiple nested
firewalls (FIG. 5), and such systems are expected to be
robust to fluctuations of enzymes in the structures. We
may therefore expect that such topological characteristic
of reaction networks could be the evolutionary origin of
homeostasis of biological systems. If a set of chemical
reactions had satisfied the condition of buffering struc-
ture by chance in the evolutionarily early time, then the
reaction set would be positively selected as an advanta-
geous circuit in evolution. We then expect that buffering
structures in existing biological networks today might be
generated and selected in such ways.
The second discussion is about the practical advan-

tage of the law of localization in experimental biology.
Our knowledge of biochemical networks is considered in-
complete. For example, it might include unidentified re-
actions or regulations. Generally, the lack of precise net-
work information would be a serious obstacle in studying
dynamical behaviors as a whole system. However, the
condition for buffering structure depends on the local net-
work structure only, which implies that we can study the
sensitivity of the system only from local information on
the network.

FIG. 6. A strategy toward elucidating a true network.

By taking advantage of this property, we can deter-
mine a “true” network by combining experimental proce-
dures in the following way (see FIG. 6). First, we predict
candidates of buffering structures from a database net-
work. Then we verify experimentally whether the candi-
date structures actually have the property of localization.

E. Coli network (glycolysis&PPP&TCA cycle) 

Glycolysis 

TCA PPP 

Schematically, 
Glycolysis 

TCA cycle 

PPP 
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・Responses to enzymes perturbation are localized in some 
regions of networks. 
・Responses form a hierarchy. 
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General features in response patterns 
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Why? 
Relation to network 

structure? 
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限局則 (the law of localization) 

!  限局則は 撹乱に対する影響が ネットワークのどの範囲まで伝搬しうるか を決定する。 

・Take a subnetwork           (metabolites        , reactions       ) such that  
　　　includes all reaction edges emanating from    .  

・“Character” defined as 
(generally nonpositive) 

・if           = 0,  
        any enzyme perturbation in      does not influence the outside of   
                                                         (Γ : buffering structure, 限局構造). 

Okada"T.,"Mochizuki"A.""



A B 
1 2 3 

4 

5 
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# metabolite = 1 
# reaction    = 1 
# cycle = 0 

# metabolite = 2 
# reaction    = 3 
# cycle = 1 

指数χの計算例 (previous example) 

A B 
1 2 3 

4 

5 
C 

# metabolite = 3 
# reaction    = 4 
# cycle = 1 

??? 



Glycolysis 

Why the response localized? 

← Localized structures 

PPP Glycolysis 

TCA Response patterns revisited 
Why localized？　　 

Why hierarchy appears? 
  

　 
　　　 

　←Nest of buffering strs. 
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Biological meanings 
・“Firewalls” against enzyme fluctuations 　 

  → biological advantage? 
 

・Units of biological functions (PPP, TCA cycle)   
   ⇔ buffering structures 
 

 ??? 

← Existence of buffering strs. 
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fugu5 mutant: defect of H+-PPase (ピロリン酸 PPiを分解する酵素を一部欠損した変異体)  

collaboraJon"with�
Ali"Ferjani"(Gakugei"Univ),""
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Buffering structure 
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Why do all networks predict insensitive [sucrose]? 

Additional internal reactions cannot break χ(Γ) = 0 
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Does defect of PPi degradation decreases [sucrose] ? 
Modifica.on#2:#add#ouBlow#pathways�

←Thm. depends on local network info. 



Summary 

✔ ️ Theoretical framework which predicts the responses to enzyme 
perturbations form network structures. 
 
✔ ️ A theorem governing response patterns (localization, hierarchy) 
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