

Introduction

- Metabolic network (代謝ネットワーク): reactions producing energy, constructing cell components

node: metabolic molecules, edge: reactions

-Each reaction is catalyzed by specific enzyme (酵素によって触媒).

- How each enzyme influences the system?

Introduction

Ishii et al. Science (2007)

We found …

(1) Network structure determines qualitative responses to perturbations.

(2) Patterns in responses.

- localization and hierarchy

(3) A theorem connecting network topology and system behaviors.

(4) Prediction of missing reactions in network

OUTLINE

- 1. Method
- 2. Example
- 3. Law of localization
- 4. Toward elucidating a true network

Dynamics of Chemical Reactions

$$\frac{dx_m}{dt} = \sum_i S_{mi} W_i(k_i, x)$$

 x_m :concentration of molecule m W_i :flux of reaction i (fn. of substrates) k_i : parameter such as enzyme amount S_{mi} : Stoichiometric matrix

<u>example</u>

$$\frac{d}{dt} \begin{pmatrix} x_A \\ x_B \\ x_C \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} W_1(k_1) \\ W_2(k_2, x_A) \\ W_3(k_3, x_C) \\ W_4(k_4, x_B) \end{pmatrix}$$

stoichiometric matrix

<u>E.g.</u>

mass action type Michaelis-Menten type $W_2 = k_2 x_A$ $W_2 = \frac{k_2 x_A}{x_A + K}$

However, we do not assume specific kinetics

Q. How do concentrations (at steady state) change under enzyme knockdown (of reaction j)?

$$k_j \to k_j - \delta k$$

- A. This can be answered from network structure alone !
 - Steady state condition

$$\sum_{i} S_{mi} W_{i}(k_{i}, x) = 0$$
 (before)
$$\sum_{i} S_{mi} W_{i}(k_{i} - \delta_{ij}\delta k, x + \delta x) = 0$$
 (after)

$$A \equiv \begin{pmatrix} \text{sub-mat.} & | & \text{ker} \\ J & | & \text{ker} \\ J \end{pmatrix} \rightarrow \delta_j x_m = (A^{-1})_{mj} \rightarrow \text{flux } \delta_j W_i$$
$$J_{im} = \begin{cases} \frac{\partial W_i}{\partial x_m} = \begin{cases} + & (m \in \text{substrate}) \\ 0 & (\text{otherwise}) \end{cases} & \text{non-zero distribution of A matrix.} \end{cases}$$

Responses to enzyme perturbation are *localized*

General features in response patterns

限局則 (the law of localization)

Okada T., Mochizuki A.

- · Take a subnetwork $\Gamma =$ (metabolites \mathcal{M} , reactions \mathcal{R}) such that \mathcal{R} includes all reaction edges emanating from \mathcal{M} .
 - · "Character" defined as $\chi(\Gamma)\equiv |\mathcal{M}|-|\mathcal{R}|+\# {\rm cycle~in}~\Gamma~~_{\rm (generally nonpositive)}$
 - if $\chi(\Gamma) = 0$,

any enzyme perturbation in $\ \Gamma \$ does not influence the outside of $\ \Gamma \$

(Γ: buffering structure, 限局構造).

<u>指数xの計算例 (previous example)</u>

 $\chi(\Gamma) \equiv |\mathcal{M}| - |\mathcal{R}| + \#$ cycle in $\Gamma = 0$

metabolite = 1
reaction = 1
cycle = 0

???

metabolite = 2
reaction = 3
cycle = 1

metabolite = 3
reaction = 4
cycle = 1

Response patterns revisited

Why localized?

← Existence of buffering strs.

 $\chi(\Gamma) = 0$

Why hierarchy appears?

←Nest of buffering strs.

Biological meanings

- "Firewalls" against enzyme fluctuations
 - \rightarrow biological advantage?
- Units of biological functions (PPP, TCA cycle)
 ⇔ buffering structures

Arabidopsis 植物の代謝系

collaboration with Ali Ferjani (Gakugei Univ), Hirokazu Tsukaya (Univ Tokyo), Masami Y. Hirai (RIKEN)

fugu5 mutant: defect of H+-PPase (ピロリン酸 PPiを分解する酵素を一部欠損した変異体)

Why do all networks predict insensitive [sucrose]?

Does defect of PPi degradation decreases [sucrose]?

Modification 2: add outflow pathways

We can predict necessary reactions. ←Thm. depends on *local* network info.

Summary

✓ Theoretical framework which predicts the responses to enzyme perturbations form network structures.

✓ A theorem governing response patterns (localization, hierarchy)

✓ Collaborations

Nakayama Lab @ Kyushu Univ. (cancer metabolism)
Kuroda Lab @ Univ. Tokyo (insulin action)
Tsukaya Lab @Univ. Tokyo (plant metabolism)
Sako Lab @ Riken (ErbB receptor network)

Acknowledgements

Atsushi Mochizuki(RIKEN) Bernold Fiedler (Univ. Berlin)

Keiichi Nakayama (Kyushu Univ.) Masaki Matsumoto (Kyushu Univ.) Michiko Shirane (Kyushu Univ.)

Shinya Kuroda (Univ. Tokyo) Shinsuke Uda (Univ. Tokyo)

Hirokazu Tsukaya (Univ. Tokyo / OIIB, NINS) Ali Ferjani (Tokyo Gakugei Univ.) Masami Y. Hirai (RIKEN) Ali Ferjani (Gakugei Univ), Hirokazu Tsukaya (Univ Tokyo), Masami Y. Hirai (RIKEN)

Yasushi Sako (Riken) Michio Hiroshima (Riken) Hiraku Miyagi(Riken)