p+A, forward Physics a bridge to the EIC

Richard Seto University of California, Riverside Sprinfest 2016 Meeting July 26, 2016 UCR

Outline

- What do gluons look like at low x?
 - Gluons and the problems of unitarity
 - The initial state of the QGP?
- Saturation and the Color Glass Condensate
 - Some finger physics: a Tutorial for the simple minded (like me)
 - Multiplicities, Correlations I: away side peak, Correlations II: near side ridge, Flow, A_N in p+A
- sPHENIX→fsPHENIX→EIC
- Physics of fsPHENIX: p+A
 - Saturation
 - Other
 - Onia
 - Heavy Quarks
 - Ultraperipheral and Diffration
 - Schedule and stuff
- Summary

Gluons and the problem of Unitarity

What is the initial state of the QGP?

QGP
$$T_i \sim 300 \text{ MeV}$$
 Note $t_c = 260-f_m$
 $\Rightarrow & & & & & \\ \Rightarrow & & & & \\ \Rightarrow & & & & \\ \Rightarrow & & & \\ \Rightarrow & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Saturation

•
$$t_{QA} >> 1$$
 interact > once : soturation
Reference frame of projectile.
Nuclear "oompf"
Factor ~ A^{1/3}
 $L = 0.14 \text{ fm}$

Saturation Scale

From here you can do some very simple minded calculations which I will not illustrate. For instance:

$$\frac{dN}{d\eta} = cN_{part}xG(x,Q_s^2) \quad xG(x,Q_s^2) \sim \ln\left(\frac{Q_s^2}{\Lambda_{QCD}^2}\right)$$

Where N_{part} is the number of participants at some centrality and c is a coefficient between the gluon and particle multiplicy. Note that Q_s^2 depends on N_{part} since it depends of the density of gluons in the transverse plane ⁷

Why is it called a Color Glass Condensate?

- Color it is QCD
- Condensate not a BE condensate, but a saturated state gluons are "condensed"
- Glass?
 - A glass is a material with long time scale
 - Think of Window glass, which is a liquid but it takes years for it to "pour"
 - induced by "frustration"
 - E.g. Spin glass
 - In Color Condensate we have "relativistic frustration"
 - Model: Break Nucleus into Gluon Field, and Source
 - "Source" quarks and gluons at high-x, *Lorenz time dialated clock runs slow*
 - Gluon field at low-x. Clock runs fast, but motion is governed by "source", and a long time scale governs the motion of the gluons. They are "frustrated"

2000000

What is the status?

Are we in the saturation regime? The "Tests"

- dAu at forward rapidity
 - Singles spectrum
 - R_{dAu} suppression in Cold Nuclear Matter?
 - Back to back particle distributions
 - VS X_{frag}
 - Multiplicities
 - vs centrality (Au+Au)
 - vs rapidity
 - SSA in pA
- dAu/AA- include evolution of the "QGP"
 - Flow
 - Au+Au, v1-v5
 - p+Au, d+Au, He3+Au, v2 and v3

Saturation

- Saturation, or something like it has to true
- The question is not whether saturation is right, but whether we are in the saturation regime at RHIC
 - A second question: what model is correct? Is the CGC the right model?
 - Do other explanations work? e.g. twist-3. Are they just the same thing in a different language or realm of applicability?
- Saturation (e.g. the CGC) comes is a variety of guises: Recombination, the MV model, ..
 - Leads to various modeling tools, e.g. KLN, MC-KLN, rcBK, MC-rcBK, IP-Glasma
 - Which for example, treat the nucleus as a solid sphere, as a WoodsSaxon, sample it to add fluctuations
 - Need to take errors (or just the results from the spread in models/model parameters) seriously
- Must look at all the evidence, and collect data on a variety of observables
 - The right model must explain many signatures; free parameters should be consistent

"Preponderance of evidence"

Note: the heavy ion community needs to know the answer to this questions

Physics I: QCD at extreme parton densities

- What do we know?
- A fair amount (personal view)

Day 1 Multiplicity distributions

400

Test:CNM and Nuclear modification factors at forward rapidity (low x)

Test:Back to Back hadrons

broadening of the opposite side "jet" peak

Saturation?:LHC: Near side ridge in p+A An Explanation: Correlations from glasma flux tubes

Due to CGC? (initial state) Due to a QGP? (final state) A combination? Something else?

Saturation?:Flow: (as a follow on the the near side ridge

Initial state, for the explanation of p+Pb v₂:BUT needs proton structure

Test: Suppression of SSA in p+Au (from Collins)

Hatta et al arXiv:1606.08640(June 2016)

Model dependence of pA. Need "preponderance (and stability) of signatures" Pretty good, but not definitive

signature	Saturation	signature	Saturation	
Singles	Υ	Singles	Υ	
RdAu	Υ	RdAu	Υ	
Back to back	Υ	Back to back	Y	
Back to back vs "x"	Υ	Back to back vs "x"	Y	
SSA in pA	N??	SSA in pA	Not inconsistent	
Multiplicity vs centrality AA	Υ	Multiplicity vs centrality AA	Υ	
Multiplicity rapidity dAu	Υ	Multiplicity rapidity dAu	Υ	
Flow in AuAu	Υ	Flow in AuAu	Y	
Flow in dAu, v2 and v3	N, so far	Near side ridge	maybe	
Feb 2016		Flow in dAu, v2 and v3	Y, add proton structure	
Back to back vs "x" SSA in pA Multiplicity vs centrality AA Multiplicity rapidity dAu Flow in AuAu Flow in dAu, v2 and v3	Υ N?? Υ Υ Υ 	Back to back vs "x" SSA in pA Multiplicity vs centrality AA Multiplicity rapidity dAu Flow in AuAu Near side ridge Flow in dAu, v2 and v3	Y Not inconsistent Y Y Y Y Y Y Maybe Y, add proton structure 2016	

18

Cold Nuclear Matter Effects, Onia

- Slides from Xuan Li
- FVTX results

Explore the CNM effect via J/ ψ and ψ'

• Mid-rapidity $\psi' R_{dA}$ different magnitude of suppression versus N_{coll} then J/ ψ . Note: Radius of ψ' larger (easier to break up, melt etc)

- Similar initial state effect
- final state effects cause the difference.
- Look forward/backward using FVTX

 Even with raw data, clearly the ψ' yield is suppressed relative to J/ψ in the Au going direction as well.

Relative ratio of ψ' to J/ ψ VS rapidity

• Centrality integrated relative ratio of ψ' to J/ ψ VS rapidity for p+Au, p+Al and d+Au (mid-rapidity).

Relative ratio of ψ' to J/ ψ

- The J/ ψ and ψ ' have similar suppression at forward rapidity.
- Strong relative suppression is observed at back rapidity.

p+Nucleus collisions: A natural bridge to the EIC

- p+A (polarized p+p) will be available in the pre-EIC era
 - Very important to keep community (e.g spin, cold QCD) alive
 - Detectors can evolve into EIC stage I
 - Example: sPHENIX → fsPHENIX → ePHENIX (the names should be changed to protect the innocent)
 - p+A will add complementary data, and provide a base of support for many of the EIC scientific priorities

I am basing my thoughts on the current implementation of fsPhenix. It is not clear that we want to limit ourselves to that

What makes it Hard: Detector design

- High particle densities, occupancies
 - Need high granularity
- High momenta
 - $\pi \rightarrow \gamma \gamma$ for direct photons
 - Consistent with sPHENIX, and a future EIC detector (e.g. PID Implemented later for EIC)
- Magnetic Fields for good momentum measurement difficult
 - Using Fringe field
 - Shape it
 - (Using separate magnet, which impedes continuous rapidity coverage)
- No money since everyone has used it already

Current PHENIX	<i>f/s</i> PHENIX	An EIC detector	
 PHENIX completed 2016 16y+ work 100+M\$ investment 130+ published papers to date 	 Comprehensive central upgrade based on BaBar magnet fsPHENIX: forward tracking, HCal and EMCAL Key study of transverse spin and C Vertexing for Heavy Quarks 	 Path of PHENIX upgrade leads to a capable EIC detector Large coverage of tracking, calorimetry and PID NM New collaboration/new ideas 	
	<image/>	<image/>	
~2000 2017-	>2022 ~2	.025 Time	
RHIC: A+A, polarize	d p+p, polarized p+A	eRHIC: e+p, e+A 25	

Forward Calorimeters

Pb/Sc sandwich HCAL (NEW)

(1.2 < η < 4.0) ΔΕ/Ε ~100%/VE

PHENIX PbSc EMCAL modules $(1.4 < \eta < 3.0-3.3)$ Δ E/E ~10%/VE

PbW (PHENIX MPC) EMCal Crystals 3.0-3.3 < η < 4.0

Reuse PHENIX Muon identification system (1.2< η <2.4) +addition muID(to η =4)

Day-1 EIC Detector

What can a new pA detector add?

- Direct photons and DY at forward rapidities:
 - The FMS and MPC-EX will make first measurements, but these will have limited statistics.

What about γ -jet?

- PHYSICS II: Heavy Meson/Quark behavior in cold nucleus
- Complements Central Arm Physics
- We should look at correlation and flow measurements as well as yields
 - Suppression of Upsilon states
 - Onia flow (e.g. higher harmonics), excited Onia flow ("melts", sensitive pressure build up at earlier times e.g. a test for a QGP), χ_{c} (tough)
 - NOTE: needs very good momentum/energy resolution.
 - Heavy Quarks: Adding vertexing (possible using long MAPS tracker)
 - γ +c/b (energy loss of heavy mesons, to complement γ +pion correlations)
 - c/b-jets

PHYSICS III: Diffractive processes

In eA collisions, this is an important signature of saturation Official goal is to do this in p+p. Can this also be looked at in p+A? Not much said in Cold-QCD white paper. Follow up?

Physics IV: Ultraperipheral vector meson production Sensitivity to the gluon structure functions

Running schedule

p+A all in 2023

	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^{\pm} , Z^0 , DY	A_N^{DY} : Postshower to FMS@STAR
Scheduled RHIC running				Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3	$A_{UT}^{\sin(\phi_s - 2\phi_h)} A_{UT}^{\sin(\phi_s - \phi_h)}$ modula- tions of h^{\pm} in jets, $A_{UT}^{\sin(\phi_s)}$ for jets	None
				First look at GPD Eg	A_{UT} for J/ Ψ in UPC	None
	2023 p [†] p @ 200 300 pb ⁻¹ 8 weeks		300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
				evolution of ETQS fct. properties and nature of the diffractive exchange in p+p collisions.	A_N for γ A_N for diffractive events	None None
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{pAu} direct photons and DY	$R_{pAu}(DY)$:Yes Forward instrum.	
				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, γ -jet, h-jet, diffraction	Yes Forward instrum.
	2023 $p^{\uparrow}A1 @ 200$ 12.6 pb^{-1} 8 weeks		12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAl} : direct photons and DY	$R_{pAl}(DY)$: Yes
				A-dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_s - \phi_h)}$ modulations of h^{\pm} in jets, nuclear FF	None
				A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	Yes Forward instrum.
Potential fut running	202X	p'p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x	A_{UT} for Collins observables, i.e. hadron in jet modulations at $\eta > 1$ and	Yes Forward instrum.
	qu			quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity observables as in 2017 run	None
ure	202X	$\vec{p}\vec{p}$ @ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $\eta > 1$	Yes Forward instrum.

Table 1-2: Summary of the Cold QCD physics program propsed in the years 2017 and 2023 and if an additional 500 GeV run would become possible.

Summary

- fSPHENIX is an ideal p+A precursor to Physics at the EIC (many topics in p+p as well). Measurements complement EIC measurements
 - Physics of high parton densities
 - Studying the detector possibilities for Onia and heavy quarks. (personal prejudice: I think we should push for these. They would make a very compelling case, given the recent pA correlation/flow results)
 - Important to keep the community alive
- fsPHENIX, is an ideal bridge to a day-1 detector at the EIC