Brief introduction to fsPHENIX and its EIC evolution

Jin Huang (BNL) 2016 PHENIX SpinFest @ UCR

Evolution of the 8 o'clock IR @ RHIC

Documented: http://www.phenix.bnl.gov/plans.html

Current PHENIX	<i>s</i> PHENIX (+fsPHENIX)	An EIC detector
 14y+ operation 100+M\$ investment Broad spectrum of physics (QGP, Hadron Physics, DM) 140+ published papers to date Completed last run 2016 	 Comprehensive central upgrade base on BaBar magnet Rich jet and beauty quarkonia physics program → nature of QGP fsPHENIX : forward tracking, Hcal and muon ID → Spin, CNM 	<list-item><list-item><list-item></list-item></list-item></list-item>
~2000 2016	 →2022 ~2	2025 Time
RHIC: A+A, spin-polarized p+p, spin-polarized p+A EIC: e+p, e+A		
PHENIX	Spin workfest 20	016 Jin Huang <ihuang@bnl.gov> 2</ihuang@bnl.gov>

Recent documents / events

- An EIC detector Letter of Intent: arXiv:1402.1209 [nucl-ex]
- sPHENIX proposal: arXiv:1501.06197 [nucl-ex]
- fsPHENIX white paper:
- <u>https://indico.bnl.gov/getFile.py/access?resId=0&materialId=5&confId=76</u> <u>4</u>
- eRHIC white paper: arXiv:1409.1633 [physics.acc-ph]
- Dec 2015: Formation of sPHENIX scientific collaboration
- RHIC cold-QCD white paper: <u>https://indico.bnl.gov/getFile.py/access?resId=0&materialId=8&confId=17</u> <u>61</u>
- 2016 fsPHENIX workshop: https://indico.bnl.gov/conferenceDisplay.py?confId=1796
- As of now: formation of cold-QCD topical group in sPHENIX collaboration

Detector evolution concept sPHENIX, arXiv:1501.06197 [nucl-ex]

Detector evolution concept sPHENIX + fsPHENIX

Detector evolution concept sPHENIX + fsPHENIX as foundation of an EIC detector

Spin workfest 2016

fsPHENIX and recent updates

Field calculation in COMSOL (SBU)

B [T]

Forward spectrometer

- BaBar superconducting magnet is a power full and large magnet
 - Nominal field: 1.5T
 - Length: 385 cm
- Field calculation and yoke tuning
 - Preliminary field calculation in 2D : POISSION, FEM, OPERA and COMSOL
- Favor for forward spectrometer
 - Designed for homogeneous B-field in central tracking
 - Longer field volume for forward tracking
 - FOM (Position resolution) ~ B*L²
 - FOM (multiple scattering) ~ B*L
 - Higher current density at end of the magnet -> better forward bending
 - Work well with RICH with field-shaping yoke: Forward & central Hcal + Steel lampshade
- Success super-conducting coil test

Momentum Resolution at high momentum limit

Recent update on tracking

Analytical tracking resolution estimation in design stage

Geant4 simulation + Kalman Filter fit using GenFit2

15

20

25

30

p[GeV/c]

Geant4 + Kalman filter

Fit five GEMs + vertex

Tracking, next ...

- Making the tracking output wider available in this workfest (Afternoon talk by Haiwang)
- Drell-Yan measurement
 - S/B: DY electron ID using track calorimeter matching
 - John L. started Pythia background sample generation in sPHENIX framework
 - /gpfs02/sphenix/lajoie/user/fsPHENIX/events , electro triggered
 - HF background determination using e-μ correlations
 - DY pair pT resolution and azimuthal angle determination
- Upsilon in small collision system (Richard)
 - Calorimeter energy scale + track pointing to separate
- Direct heavy flavor tagging (Richard, LANL?)
 - $^\circ~$ Space point using central MAPS detector partially cover to $\eta{<}3$ for the forward track

Beam test on the central calorimetry

Recent update on forward calorimetry

- Outer EMCal: restack super module of PHENIX PbSc (Pb-shashlyk)
- Inner EMCal: restack
 PHENIX MPC (PWO₄)
- HCal: Tile-Cal with Iron absorber
- John produced layout and implemented in Geant4

Quantifying impact of inactive field return (~ 1 interaction length after EMCal)

Magnet end door

ENIX

-> 1 interaction length of inactive material Limited to ~14% - large constant term

By John Lajore

Energy resolution

Hadron shower lineshape (30 GeV pion) VS field return thickness (inactive iron)

By David Kapukchyan

Lineshape and low side tails

Spin workfest 2016

Jin Huang <jhuang@bnl.gov> 13

Calorimetry, next ...

- Evolving the concept:
 - Readout, trigger
 - HCal as magnetic field return (iron based tile-cal?)
- Quantifying jet response (Chong, Dave)
- Sieves with charge tagging (update from white paper with unfolding?)
- Transversity measurement using track azimuthal A_N in jet (Ralf)

EIC concept and areas to be updated

Next, in EIC era

- -1<η<+1 (barrel) : sPHENIX + Compact-TPC + DIRC/TOF Working title: "ePHENIX"</p>
- -4<η<-1 (e-going) :
 High resolution calorimeter + GEM trackers
- +1<η<+4 (h-going) :</p>
 - 1<η<4 : GEM tracker + Gas RICH/TOF
 - 1<η<2 : Aerogel RICH
 - 1<η<5 : EM Calorimeter + Hadron Calorimeter
- Along outgoing hadron beam: ZDC and roman pots

LOI: arXiv:1402.1209

Tracking, PID and calorimetry coverage

Calorimeter

- Electron identification (e-EMC, barrel EMC)
- Electron kinematics measurement (e-EMC, barrel EMC)
- DIS kinematics using hadron final states (barrel EMC/HCal, h-EMC/HCal)
- Photon ID for DVCS (All EMC)
- Diffractive ID (h-HCal)
- High momentum track energy measurement (h-HCal)

DIS kinematics survivability $ePHENIX 15 \times 250 \text{ GeV}$ Electron 0^{9} $0^{10^{2}}$ $0^{10^{$

Jin Huang <jhuang@bnl.gov>

×

Hadron Identification

Target updates - ePHENIX

- Update with sPHENIX
- New detector that can be introduced to the concept:
 - ToF as part of eRD14
 - MAPS as part of sPHENIX ref. tracking design
 - TPC as SBU refining design for sPHENIX based on ALICE and ILC R&D
- Updated hadron ID in e-going direction
- Refresh performance plots
- New impact studies:
 - Parity violating NC exchange asymmetry projection and impact (SBU)

Physics performance to be updated: Example longitudinal structure of proton

- ▶ Update with EM calorimeter and tracking simulation,
 → updates on DIS kinematic determination and e-ID
- Update with impact plot with updated PDF, RHIC projection and new projection curve

Summary

- Concepts evolve sPHENIX -> + fsPHENIX → a foundation of an EIC detector
- Concept developed in the past years, being updated/need to be updated as physics knowledge, detector technology evolves.
 - Abundant opportunities to contribute
 - Open agenda/software development to colleagues in the field
- Cold-QCD was recognized by the sPHENIX collaboration as one of four topical groups

Extra information

Physics performance: Transverse structure of nucleon

- Deliver clean measurement for SIDIS and DVCS
- Significantly expand x-Q² reach and precision for such measurements
- Extract sea quark and gluon's transverse motion and their tomographic imaging inside polarized nucleons
- Sensitive to the orbital motion of quark inside proton

Physics performance: nucleus as a laboratory for QCD

- Probe the kinematic range to inspect the transition to gluon saturation region and their nuclear size dependent
 - $^\circ$ Large H-cal coverage (-1<q<+5) provide clean ID of diffractive events with reasonable efficiency through the rapidity gap method
- SIDIS in e-A collisions probe color neutralization and harmonization as it propagate through nuclear matters
 - Provide a set of flexible handles : struck quark's energy and flavor, virtuality of DIS, geometry of the collision, specie of nuclei.

2.5m Hcal summary

pp

2.5m FHCal results

need refresh for new calo, should do better

Presented: Appendix A, Nov-2014 sPHENIX proposal [arXiv:1501.06197]

Spin workfest 2016

Jin Huang <jhuang@bnl.gov>

28

Electron Identification

ENIX

PH

 Cut on electron energy only marginally reduces x-Q² coverage

Angle measurement

ENIX

- High survival probability (80%) in each x,Q² bin
- e-going and barrel coverage

Solution (barrel): √ (sPHENIX?) Compact-TPC+(MAPS?) √ sPHENIX EMCal

90% eff_90% purity

ENIX

✓ h-going: Gas RICH (high p)& Aerogel (low p)

Exclusive DIS: DVCS photons

Jin Huang <jhuang@bnl.gov> 33

Active development from both sPHENIX and for EIC applications

- Software open in access:
 - sPHENIX software core: <u>https://github.com/EIC-Detector/coresoftware</u>
 - Macros to drive the software: <u>https://github.com/EIC-Detector/coresoftware-eic</u>

- Virtual machine under test, available to run on your computer soon
- Software meeting series (in open access):
 - Application to sPHENIX: <u>https://indico.bnl.gov/categoryDisplay.py?categId=93</u>
 - Application to EIC: <u>https://indico.bnl.gov/categoryDisplay.py?categId=88</u>
 - Tutorial workshop: <u>https://indico.bnl.gov/conferenceDisplay.py?confld=1237</u>
- A few updates shown in the next section

Detector implemented in details under Fun4All

Field effect distortion for RICH

- Field calculated numerically with field return
- Field lines mostly parallel to tracks in the RICH volume with the yoke
- We can estimate the effect through field simulations

RICH

200

300

EMCal

400

A RICH Ring:

Photon distribution due to tracking bending only

Field effect – Radius uncertianty of RICH Ring

Quantify ring radius error

In the respect of PID: minor effect

H-going side - performance

Central Barrel PID, DC + DIRC in BaBar

