Why fsPHENIX is interesting for heavy ion physics

Takao Sakaguchi Brookhaven National Laboratory

Contents

- Introduction to HI physics
- Review of highlight results at PHENIX related to forward measurement
- New measurement at fsPHENIX

HI physics field: QCD phase diagram

Reality of collisions

Dynamics after collisions

- Gold ions pass through each other
 - High-x partons fly away
 - Low-x gluons remain in the mid-rapidity (y=0), and create "gluon matter"
 - people says this is color glass condensate (CGC)
- CGC \rightarrow Gluon Plasma \rightarrow QGP \rightarrow Mixed phase \rightarrow Hadronization+expansion
- Transition temperature (quark to hadron): T_{chem}=~180MeV

 $\frac{Parameters}{At Hadronization: T_{chem}, \mu_b}$ At Expansion: T_{kin}, β

Another way to look at dynamics

Several quantities for HI

- <u>Number of participant nucleons</u> (Npart)
 - Calculable from impact parameters
 - A measure of energy density
- <u>Number of nucleon collisions</u> (Ncoll)
 - Number of nucleon collisions in an event
 - Nucleons are considered to collide individually in high energy collisions
- <u>Centrality</u>: Event class variable proportional to impact parameters
 - 0%: b=0, Central collisions
 - 100%: b=bmax, Peripheral collisions

Know your position

• Temperature and Baryo-chemical potential (∝baryon density) at freezeout is estimated from particle ratios and by using Grand Canonical Stat Model

$$\ln Z_{i} = \frac{Vg_{i}}{2\pi^{2}} \int_{0}^{\infty} \pm p^{2} dp \ln \left[1 \pm \exp(-(E_{i} - \mu_{i})/T)\right],$$

$$\mu_i = \mu_b B_i + \mu_{I_3} I_{3i} + \mu_S S_i + \mu_C C_i$$

 $g_i = (2J_i + 1)$ Spin DOF

Your position

Highlights related to forward measurement

1. Particle flow

- In non-central collisions, the collision area is not isotropic
 - Different pressure gradient produces momentum anisotropy of emitted particles
- Measure the angular distribution of the particles with respect to the reaction plane
 - 2nd order Fourier coefficient shows the elliptic flow

Spatial asymmetry eccentricity	$\boldsymbol{\varepsilon} = \frac{\left\langle y^2 \right\rangle - \left\langle x^2 \right\rangle}{\left\langle y^2 \right\rangle + \left\langle x^2 \right\rangle}$
Mom. Asymmetry elliptic flow	$\mathbf{v}_{2} = \frac{\left\langle p_{y}^{2} \right\rangle - \left\langle p_{x}^{2} \right\rangle}{\left\langle p_{y}^{2} \right\rangle + \left\langle p_{x}^{2} \right\rangle}$

NIX meeting

Elliptic flow result (v_2)

- Large flow is observed as a function p_T
 - As particles become heavier, the flows become smaller in low $\ensuremath{p_{T}}$
- Plotting the per-quark $v_2 (v_2/n)$ vs kinetic energy (KE_T/n)
 - All the particles follow a universal line, suggesting the flow is built at quark level

Fluctuation of nucleon positions yields...

- Fluctuation of nucleon position yields higher order anisotropy
 Higher order flow (v₃, v₄, ... v_n)
- Higher order flows are sensitive to the properties of the matter
 - Equation of state E=E(P), shear viscosity (η) to Entropy density (s) ratio (η/s)

Analogy to cosmology

- Fluctuation of temperature in cosmic microwave background
 - A trace of phase transition.
- Input to cosmological model

From NASA and Rev. of Part. Phys.

v_n results with hydrodynamics model

- PHENIX (RHIC) and ATLAS (LHC) v_n are compared with a hydrodynamics model
 - QGP as fluid consisting of partons
- The model reproduces the higher order flow at RHIC, LHC very well
 - Almost perfect fluid is realized at RHIC(η /s from quantum limit: $\sim 1/4\pi$)

2. Jet energy loss

- High p_T hadrons (π^0 etc.) are leading particles from jets (hard scattered partons)
 - A large fraction of jet momentum are carried
- Energy loss is turned into the yield suppression of high pT hadrons

Yield suppression of leading particles

- Nuclear Modification Factor (R_{AA})
 - (Yield in A+A collision)/(Yield in p+p collision × Ncoll)
 - $R_{AA} = 1$: No nuclear effect
 - R_{AA} <1: Suppression due to energy loss, etc.

3. Thermal photons

- Emitted from all the stages after collisions
- Penetrate the system unscathed after emission
 - Carry out thermodynamical information such as temperature
- Photons will be produced by Compton scattering or qqbar annihilation at LO

Small Rate: Yield $\propto \alpha \alpha_s$

$$E\frac{dR_{\gamma}}{d^{3}p} = -\frac{\alpha_{em}}{\pi^{2}} \operatorname{Im}\Pi_{em}(\omega,k)\frac{1}{e^{E/T}-1}$$

 $\Pi_{\rm em}$: photon self energy

$$\operatorname{Im}\Pi_{em}(\omega,k) \approx \ln\left(\frac{\omega T}{\left(m_{th}(\approx gT)\right)^{2}}\right)$$

•Product of Bose distribution and transition probability

•Slope at E>>T tells temperature (T~200MeV)

A recent review: TS, Pramana 84, 845(2015)

Temperature of the system

- T_{ave} = 239 ± 25(stat) ± 7(syst) MeV (0-20%)
 - c.f. LHC, Pb+Pb 2.76TeV: $T_{ave} = 304 \pm 51$ (stat+syst) MeV (0-40% centrality)

*Phase transition would occur at T~180MeV

Result improved theories

arXiv:1509.07758

- Large yield
 - Emission from the early stage where temperature is high
- Large elliptic flow (v₂)
 - Emission from the late stage where the collectivity is sufficiently built up
- A big input to the time profile of the theoretical model
 - A latest calculation of hydrodynamics model did a fairly good job
 - PRL 114, 072301(2015)
- Ingredients discovered
 - Late stage emission (near freezeout)

T. Sakag

- Blueshift of spectra
- Viscosity correction is necessary

Comparison with 20-40% cent data

Achievement and next steps

- Most of the observables are in mid-rapidity
 - People assume that Bjorken scenario of expanding system works
- 3D and time profile of the QGP is not measured in detail
 - Hadronic observables are from the hadronization (freezeout) stage
 - Photons have been the tool for exploring pre-freezeout phase
 - Longitudinal profile of the system is very little known
 - And, the recent theoretical model says it is not trivial
- How the system develops from the color glass condensate (CGC) to glasma and to QGP?
- Measurement at forward rapidity can help answer the questions
 - Observables are similar to the ones in midrapidity

Remainder: dynamics after collisions

- The system expands longitudinally (beam direction) as well as transversely (normal to beam direction)
- Question is whether the expansion is isotropic (and uniform)

 $\frac{Parameters}{At Hadronization: T_{chem}, \mu_b}$ At Expansion: T_{kin}, β

3D scan of QGP

- BRAHMS data showed that mid- and forward rapidity have different μ_b
 - Possibility of exploring different path in phase diagram
- 3D scan of QGP using photons and high *p* hadrons at forward rapidity will be interesting.
- How about the temperature at forward rapidity?

BRAHMS also measured this

- BRAHMS published $\pi/K/p$ spectra in forward region in Cu+Cu collisions
- Particle ratios (related to ${\sf T}_{\sf chem}$ and $\mu_{\sf b}$), ${\sf T}_{\sf kin}$ and β are compared with those from Au+Au collisions
- As found in mid-rapidity before, the parameters scales with N_{part} (dN/dy)

3D profile of Au+Au and Cu+Cu collisions look similar

Flow tells "liquidity" of the system

- State-of-art hydrodynamical calculations were compared with v₂ measurement by PHOBOS
- Without changing shear viscosity as a function of temperature (assumed), the data is not reproduced
 - Shear viscosity = "liquidity"
- More differential measurement help determine spatial structure
 - Higher order flow, and their fluctuation, etc.

G. Denicol, A. Monnai, and B. Schenke, PRL116, 212301(2016)

 $(\eta T/(\epsilon+P))_{min}=0.04 a=0 b=10$ $(\eta T/(\epsilon+P))_{min}=0.12 a=0 b=0$ $(\eta T/(\epsilon+P))_{min}=0.04 a=10 b=0$ $(\eta T/(\epsilon+P))_{min}=0.04 a=10 b=2$

Au+Au 200GeV 0-40%

0

2

Λ

6

 $p_{T} > 0.15 \text{ GeV}$

-2

_/

Ю

PHOBOS 0-40%

0.09

0.08

0.07

0.06

0.05

0.04 0.03 0.02

0.01

22

Jet suppression tells size of the matter

- Degree of the suppression can tell how much matter that the hard scattered partons passed through
- We should scan more continuously over rapidity
 - \rightarrow Need large statistics with fsPHENIX

Before QGP = CGC?

- The collision area is full of gluons in the very initial stage
 - − Gluon plasma \rightarrow q-qbar -> QGP
- At very high energy, the small x gluons increasing exponentially, which eventually violates unitarity
 - Small x gluons have to merge and turn into higher x gluons
- Color Glass Condensate (CGC)
 - In highly non-linear state and has strong correlation
- Hadron yield will be reduced in low pT at forward (backward) rapidity)
 - Small x region

CGC explains the p+A flow?

- Strong correlation from the initial high density gluonic state (CGC) may have survived until final state
- Part of the v₂ measured in p+Pb collisions at LHC can be explained, but not perfect
 - No quantitative calculation is shown for RHIC

Spotting particular state

- It is said that the correlation of particles with large rapidity gap comes from the initial state of the collisions
 - Simple causality argument (e.g. arXiv:1412.0471)
- Using this fact, one can spot the particular time of the collision?
 e.g. CGC?

Using A+A and p+A

• One can dial the time in the system evolution

Both particles in very forward rapidity: tuning to very initial stage: CGC

Using A+A and p+A

• One can dial the time in the system evolution

Both particles in mid-forward rapidity: tuning also into later stage: CGC+QGP

Using A+A and p+A

• One can dial the time in the system evolution

Both particles in mid rapidity: tuning more into later stage: CGC+QGP

Taking flow (v₂) as an example

 If there is no hydrodynamical flow in p+A, i.e., the flow is built only by CGC (left)

 If there is hydrodynamical flow in p+A, i.e., the flow is built by CGC+QGP (right)

Why RHIC even after LHC?

- We (think) we confirmed that RHIC produced QGP and also at LHC
- More hard scattering background at LHC as compared to RHIC
 - Soft production is increased by $T = E^{1/4}$ while hard scattering is by $(\sqrt{s})^8$
 - RHIC is suitable place for detail investigation of QGP
- ATLAS published forw-backward multiplicity correlation in |η|<2.4
 arXiv:1606.08170
 - Sensitive initial state and fluctuation of longitudinal expansion
 - Rapidity range is still in QGP region
- fsPHENIX rapidity is closer to the beam rapidity compared to LHC
 - e.g. ATLAS measurement in $|\eta|$ < 2.4. ALICE FOCAL upgrade: (2.5< η < 6)
 - Note that the beam rapidity for 2.76TeV collisions is y=8.7, $\Delta y = 8.7-6 = 2.7$
 - At RHIC, beam rapidity is y=5.5, so if we instrument up to y=3.5, $\Delta y=2$.
 - Covering more forward rapidity compared to LHC.

Addition to current fsPHENIX design

- Instrumentation both forward and backward, ideally
 - In order to perform wide-rapidity correlation measurement
 - We can do forward-central correlation, too
- EMCal with good position/energy resolution
 - Higher granularity
 - $\ \pi^0$ and/or η , single photon separation is needed
 - PbSc+pre-shower is another option
- Good tracking in high multiplicity environment
- A device to separate $\pi/K/p$ (if possible)
 - K/p separation may be enough, assuming π^0 is well identified down to low p_{T} in EMCal
 - A candidate device is time-of-flight?
 - Feasibility study is needed, which is not trivial, though.

To conclude

- HI measurement at forward (and backward) rapidity is definitely new and there are likely many discoveries.
 - Very little measurement so far
 - Theory community rapidly gets interested in this region
- Not necessarily to be done in most central HI collisions in Au+Au
 Or, we can collide lighter nuclei
- Close tag with p+A/p+p collisions is essential
- I think it is worth mentioning this in fsPHENIX proposal to make the case stronger
 - I'd be happy to write one section on this in the proposal

backup

Quark Matter: Quark Gluon Plasma (QGP)

- Quarks and Gluons confined in nucleons will be liberated in a hot and dense environment
 - Quark Gluon Plasma (QGP)
 - Understanding quark confinement
 - Origin of nucleon mass (Chiral symmetry restoration)
- This phase is believed to have existed in the early Universe
 - Possibly existing in the core of neutron stars
- Can we produce QGP?
 - Use of relativistic heavy ion collisions
 - Hot and dense medium is produced. Energy, density and size of the system is controllable
 - Measure thermodynamical properties such as temperature or entropy

2. Jet quenching (new from RHIC)

- Yield of jets can be calculated using perturbative QCD (pQCD)
- Exploring non-perturbative region with perturbative probes

Jets in p+p (primordial hard scattering)

Jets in QGP

- Hard scattered partons lose their energies in the QGP via gluon radiation or parton collisions
- Jets that are fragments of the partons accordingly reduce their energies

Jets in QGP

- Hard scattered partons lose their energies in the QGP via gluon radiation or parton collisions
- Jets that are fragments of the partons accordingly reduce their energies

Landau and Bjorken expansion models

 $\eta = \frac{1}{2} \ln \frac{t+z}{t-z_{42}}$

 $\gamma = \sqrt{s_{NN}} / 2m_N$

differ mostly by initial conditions

 $\tau = \sqrt{t^2 - z^2}$ space-time rapidity

July 27, 2016

Source size from Interferometry

$$A_{12} = \frac{1}{\sqrt{2}} [e^{ip_1 \cdot (r_1 - \boldsymbol{x})} e^{ip_2 \cdot (r_2 - \boldsymbol{y})} + e^{ip_1 \cdot (r_1 - \boldsymbol{y})} e^{ip_2 \cdot (r_2 - \boldsymbol{x}))}$$
$$P_{12} = \int d^4 \boldsymbol{x} d^4 \boldsymbol{y} |A_{12}|^2 \rho(\boldsymbol{x}) \rho(\boldsymbol{y}) = 1 + |\tilde{\rho}(\boldsymbol{q})|^2 \equiv C_2(\boldsymbol{q})$$

- Interference of two identical particles from incoherent sources
 - First applied by Hanbury-Brown and Twiss for star size measurement
 - Hanbury-Brown Twiss (HBT) effect
- In heavy ion collisions, we use π, K, etc. as probes.
 - Measurement can be basically made at freezeout

Direct photon HBT

- One can study time-dependent size of the QGP
 - Photons penetrate systems. Momentum will tell the time they are emitted.
 - Angle dependent HBT measurement is also possible \rightarrow shape measurement
- This measurement will be best done at RHIC. Background from the hard scattering makes the measurement difficult at LHC.

Shooting thermal photons

- Hadron contamination to the photon samples has been a big issue
- Smallest hadron contamination when using photons converted to electron pairs

Direct photon flow: v_2 and v_3

- Subtract hadron-decay photon v_n from inclusive photon v_n
 - Decay photon v_n is calculated from the measured $\pi^0 v_n$
 - $-\nu_n$ for other hadrons are obtained by $\text{KE}_{\text{T}}\text{-scaling}$ + m_{T} scaling from π^0 and Kaon
- Sizable positive flow is observed.
 - Similar trend as $h^{+/-}$ and π^0 (PRL 107, 252301 (2011))
 - Late stage emission?

arXiv:1509.07758

3. Direct photons: answer to suppression

- Is the suppression due to energy loss of hard scattered partons?
- Or, the hard scattering cross-section simply does not scale between p+p and Au+Au?
- We need something produced in the hard scattering and emerging unmodified

Direct photons is a tool to answer:

Jet Production: Yield $\propto \alpha_s^2$

Cartoon from F. Gelis (e.g. arXiv:1412.0471)

Similarity in A+A, p+A and p+p?

- p+p and p+A collisions have been used as a reference to investigate the phenomena in A+A collisions
- In very high energy collisions, the situation is different?

Flow is also seen in p+Pb and d+Au

- Flow is also observed in most central p+Pb and d+Au collisions at LHC and RHIC at $\sqrt{s_{NN}}$ = 5.02TeV and 200GeV, respectively
- The intensity is as much as that in Pb+Pb and Au+Au collisions
- Possible QGP production in the small systems?

2. Energy density

• Total transverse energy is related to the energy density (Bjorken formula)

