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HI	physics	field:	QCD	phase	diagram	
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Reality of collisions	
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Low	energy	（Landau	picture）	

Stopping	
High	T,		High	µB	

High	energy	（Bjorken	picture）	

Passing	through	
	
High	T,	Low	µB	

Expansion	in	beam	and	
transverse	direcAon	



Dynamics	aSer	collisions	
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•  Gold	ions	pass	through	each	other	
–  High-x	partons	fly	away	
–  Low-x	gluons	remain	in	the	mid-rapidity	(y=0),	and	create	“gluon	ma]er”	
–  people	says	this	is	color	glass	condensate	(CGC)	

•  CGCà	Gluon	Plasmaà	QGPàMixed	phaseà	Hadroniza2on+expansion	

•  Transi2on	temperature	(quark	to	hadron)：	Tchem=~180MeV	

Gluon	Plasma	 QGP	phase	 Mixed	phase	 HadronizaAon	+	Expansion  

Parameters	
At	Hadroniza2on:	Tchem,	µb	
At	Expansion:	Tkin,	β



Another	way	to	look	at	dynamics	

Color	Glass	Condensate	

Glasma	
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Several	quan22es	for	HI	
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•  Number	of	par2cipant	nucleons	
(Npart)	
–  Calculable	from	impact	parameters	
–  A	measure	of	energy	density	

•  Number	of	nucleon	collisions	(Ncoll)	
–  Number	of	nucleon	collisions	in	an	

event	
–  Nucleons	are	considered	to	collide	

individually	in	high	energy	collisions	

•  Centrality:	Event	class	variable	
propor2onal	to	impact	parameters	
–  0%:	b=0,	Central	collisions	
–  100%:	b=bmax,	Peripheral	collisions	

0%	centrality	

100%	
centrality	

Par2cipant	nucleons	

Spectator	nucleons	



Know	your	posi2on	

July	27,	2016	 T.	Sakaguchi,	fsPHENIX	mee2ng	 7	

•  Temperature	and	Baryo-chemical	poten2al	(∝baryon	density)	at	freezeout	is	
es2mated	from	par2cle	ra2os	and	by	using	Grand	Canonical	Stat	Model	

See,	e.g.,	A.	Andonic,	et	al.,	NPA	772(2006)167	

Spin	DOF	

Number	of	par2cles:	ni	

Chemical	poten2al	µi	
µb:	Baryon,		µI3:	Isospin	
µS:	Strangeness,		µC:	Charm	



Your	posi2on	
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Highlights	related	to	forward	
measurement	
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1.	Par2cle	flow	
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•  In	non-central	collisions,	the	collision	area	is	not	
isotropic	
–  Different	pressure	gradient	produces	momentum	

anisotropy	of	emi]ed	par2cles	

•  Measure	the	angular	distribu2on	of	the	par2cles	
with	respect	to	the	reac2on	plane	
–  2nd	order	Fourier	coefficient	shows	the	ellip2c	flow	

d 3N
pTdpTdydϕ

∝ [1+ 2v2 (pT )cos2(ϕ −φRP ) + ...]

Mom. Asymmetry 
 elliptic flow v2 =

py
2 − px

2

py
2 + px

2

Spatial asymmetry 
 eccentricity ε =

y2 − x2

y2 + x2

Larger	pressure	
gradient	in	plane	



Ellip2c	flow	result	(v2)	
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•  Large	flow	is	observed	as	a	func2on	pT	
–  As	par2cles	become	heavier,	the	flows	become	smaller	in	low	pT	

•  Plopng	the	per-quark	v2	(v2/n)	vs	kine2c	energy	(KET/n)	
–  All	the	par*cles	follow	a	universal	line,	sugges*ng	the	flow	is	built	at	quark	level	

Au+Au	√sNN=200GeV	
20-60%	centrality	

PHENIX,	PRL99,	052301(2007)	



Φ2	

Fluctua2on	of	nucleon	posi2ons	yields…	
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•  Fluctua2on	of	nucleon	posi2on	yields	higher	order	anisotropy	
–  Higher	order	flow	（v3,	v4,	…	vn)	

•  Higher	order	flows	are	sensi2ve	to	the	proper2es	of	the	ma]er	
–  Equa2on	of	state	E=E(P),	shear	viscosity	(η)	to	Entropy	density (s)	ra2o	(η/s)	

Φ3	

⌫n =< cos{n(�� �n)} >

dN

d(�� n)
= N0[1 + 2

1X

n=1

vncos{n(�� �n)}]

Φn	:	Event	Plane	



•  Fluctua2on	of	temperature	in	
cosmic	microwave	background	
–  A	trace	of	phase	transi2on.	

•  Input	to	cosmological	model	
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Analogy	to	cosmology	

From	NASA	and	Rev.	of	Part.	Phys.	



vn	results	with	hydrodynamics	model	
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•  PHENIX	(RHIC)	and	ATLAS	(LHC)	vn	are	compared	with	a	hydrodynamics	model	
–  QGP	as	fluid	consis2ng	of	partons	

•  The	model	reproduces	the	higher	order	flow	at	RHIC,	LHC	very	well	
–  Almost	perfect	fluid	is	realized	at	RHIC（η/s	from	quantum	limit:	~1/4π）	

C.	Gale	et	al.,	PRL110,	012302(2013)	B.	Schenke,	S.	Jeon	and	C.	Gale,	PRC	85,	024901	(2012)	

RHIC	 LHC	



2.	Jet	energy	loss	
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•  High	pT	hadrons	(π0	etc.)	are	leading	par2cles	from	jets	(hard	sca]ered	
partons)	
–  A	large	frac2on	of	jet	momentum	are	carried	

•  Energy	loss	is	turned	into	the	yield	suppression	of	high	pT	hadrons	

X.-N., Wang, PRC 58 (1998)2321 

Energy loss =Yield suppress 

π0 without energy loss 

π0 with energy loss 
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Yield	suppression	of	leading	par2cles	
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•  Nuclear	Modifica2on	Factor	(RAA)	
–  (Yield	in	A+A	collision)/(Yield	in	p+p	collision	×	Ncoll)	
–  RAA	=1:	No	nuclear	effect	
–  RAA	<1:	Suppression	due	to	energy	loss,	etc.	
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π0	and	η,	PHENIX,	PRC82,	011902(R)	(2010)	



3.	Thermal	photons	
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•  Emi]ed	from	all	the	stages	aSer	
collisions	

•  Penetrate	the	system	unscathed	aSer	
emission	
–  Carry	out	thermodynamical	

informa2on	such	as	temperature	

•  Photons	will	be	produced	by	Compton	
sca]ering	or	qqbar	annihila2on	at	LO	

Small	Rate:	Yield ∝ ααs	

γ
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• Product	of	Bose	distribu2on	
and	transi2on	probability	

• Slope	at	E>>T	tells	
temperature	(T~200MeV)	

A	recent	review:	TS,	Pramana	84,	845(2015)	



Temperature	of	the	system	

18	

•  Tave	=	239	±	25(stat)	±	7(syst)	MeV	(0-20%)	
–  c.f.	LHC,	Pb+Pb	2.76TeV:	Tave	=	304	±	51(stat+syst)	MeV	(0-40%	centrality)	

PRC91, 064904 (2015)	

T.	Sakaguchi,	fsPHENIX	mee2ng	 pT[GeV/c]	

Direct	photon	spectra	

*Phase	transiAon	would	occur	at	T~180MeV	

Thermal	photon	spectra	

Virtual	
photon	

July	27,	2016	



Result	improved	theories	
•  Large	yield	

–  Emission	from	the	early	stage	where	
temperature	is	high	

•  Large	ellipAc	flow	(v2)	
–  Emission	from	the	late	stage	where	

the	collec2vity	is	sufficiently	built	up	

•  A	big	input	to	the	2me	profile	of	
the	theore2cal	model	
–  A	latest	calcula2on	of	hydrodynamics	

model	did	a	fairly	good	job	
•  PRL	114,	072301(2015)	

•  Ingredients	discovered	
–  Late	stage	emission	(near	freezeout)	
–  BlueshiS	of	spectra	
–  Viscosity	correc2on	is	necessary	

July	27,	2016	 19	T.	Sakaguchi,	fsPHENIX	mee2ng	

arXiv:1509.07758	
Comparison	with	20-40%	cent	data	



Achievement	and	next	steps	
•  Most	of	the	observables	are	in	mid-rapidity	

–  People	assume	that	Bjorken	scenario	of	expanding	system	works	

•  3D	and	2me	profile	of	the	QGP	is	not	measured	in	detail	
–  Hadronic	observables	are	from	the	hadroniza2on	(freezeout)	stage	
–  Photons	have	been	the	tool	for	exploring	pre-freezeout	phase	
–  Longitudinal	profile	of	the	system	is	very	li]le	known	

•  And,	the	recent	theore2cal	model	says	it	is	not	trivial	

•  How	the	system	develops	from	the	color	glass	condensate	(CGC)	to	
glasma	and	to	QGP?	

•  Measurement	at	forward	rapidity	can	help	answer	the	ques2ons	
–  Observables	are	similar	to	the	ones	in	midrapidity	
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Remainder:	dynamics	aSer	collisions	
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•  The	system	expands	longitudinally	(beam	direc2on)	as	well	as	
transversely	(normal	to	beam	direc2on)	

•  Ques2on	is	whether	the	expansion	is	isotropic	(and	uniform)	

Gluon	Plasma	 QGP	phase	 Mixed	phase	 HadronizaAon	+	Expansion  

Parameters	
At	Hadroniza2on:	Tchem,	µb	
At	Expansion:	Tkin,	β



3D	scan	of	QGP	

July	27,	2016	 T.	Sakaguchi,	fsPHENIX	mee2ng	 22	

•  BRAHMS	data	showed	that	mid-	and	forward	rapidity	have	different	µb		
–  Possibility	of	exploring	different	path	in	phase	diagram	

•  3D	scan	of	QGP	using	photons	and	high	p	hadrons	at	forward	rapidity	will	
be	interes2ng.	

•  How	about	the	temperature	at	forward	rapidity?	

Beam	direc2on	

Transverse	direc2on	

y=2.5	
y=1.5	

y=0.5	

µb(MeV)=20	 50	 100	
BRAHMS,	PRL90,	102301	(2003)	



BRAHMS	also	measured	this	
•  BRAHMS	published	π/K/p	spectra	in	forward	region	in	Cu+Cu	collisions	

•  Par2cle	ra2os	(related	to	Tchem	and	µb),	Tkin	and	β	are	compared	with	those	
from	Au+Au	collisions	

•  As	found	in	mid-rapidity	before,	the	parameters	scales	with	Npart	(dN/dy)	
–  3D	profile	of	Au+Au	and	Cu+Cu		collisions	look	similar	
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BRAHMS,	PRC94,	014907(2016)	



Flow	tells	“liquidity”	of	the	system	
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•  State-of-art	hydrodynamical	calcula2ons	were	
compared	with	v2	measurement	by	PHOBOS	

•  Without	changing	shear	viscosity	as	a	func2on	
of	temperature	(assumed),	the	data	is	not	
reproduced	
–  Shear	viscosity	=	“liquidity”	

•  More	differen2al	measurement	help determine	
spa2al	structure	
–  Higher	order	flow,	and	their	fluctua2on,	etc.	

G.	Denicol,	A.	Monnai,	and	B.	Schenke,	
PRL116,	212301(2016)	



Jet	suppression	tells	size	of	the	ma]er	
•  Degree	of	the	suppression	can	tell	how	much	ma]er	that	the	hard	

sca]ered	partons	passed	through	

•  We	should	scan	more	con2nuously	over	rapidity	
–  à	Need	large	sta2s2cs	with	fsPHENIX	
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Beam	direc2on	

Transverse	direc2on	

y=2.5	

y=1.5	

y=0.5	

BRAHMS,	PRL91,	072305(2003).	



Before	QGP	=	CGC?	
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•  The	collision	area	is	full	of	gluons	in	
the	very	ini2al	stage	
–  Gluon	plasma	à	q-qbar	->	QGP	

•  At	very	high	energy,	the	small	x	
gluons	increasing	exponen2ally,	
which	eventually	violates	unitarity	
–  Small	x	gluons	have	to	merge	and	

turn	into	higher	x	gluons	

•  Color	Glass	Condensate	(CGC)	
–  In	highly	non-linear	state	and	has	

strong	correla2on	

•  Hadron	yield	will	be	reduced	in	low	
pT	at	forward	(backward)	rapidity)	
–  Small	x	region	



CGC	explains	the	p+A	flow?	
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•  Strong	correla2on	from	the	ini2al	high	
density	gluonic	state	(CGC)	may	have	
survived	un2l	final	state	

•  Part	of	the	v2	measured	in	p+Pb	collisions	at	
LHC	can	be	explained,	but	not	perfect	
–  No	quan2ta2ve	calcula2on	is	shown	for	RHIC	

A.	Dumitru	et	al,	PLB697	(2011)21	
K.	Dusling	and	R.	Venugopalan,	PRD87,	094034(2013)	

B.	Schenke	et	al.,	PLB747	(2015)76	



Spopng	par2cular	state	
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•  It	is	said	that	the	correla2on	of	par2cles	with	large	rapidity	gap	comes	
from	the	ini2al	state	of	the	collisions	
–  Simple	causality	argument	(e.g.	arXiv:1412.0471)	

•  Using	this	fact,	one	can	spot	the	par2cular	2me	of	the	collision?	
–  e.g.	CGC?	



Using	A+A	and	p+A	
•  One	can	dial	the	2me	in	the	system	evolu2on	
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h+/-:		e.g.	π0	

zT = pTa/pTt 
ξ = ln(1/zT)	

Both	par*cles	in	very	forward	rapidity:	tuning	to	very	ini*al	stage:	CGC	



Using	A+A	and	p+A	
•  One	can	dial	the	2me	in	the	system	evolu2on	
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h+/-:		e.g.	π0	

zT = pTa/pTt 
ξ = ln(1/zT)	

Both	par*cles	in	mid-forward	rapidity:	tuning	also	into	later	stage:	CGC+QGP	



Using	A+A	and	p+A	
•  One	can	dial	the	2me	in	the	system	evolu2on	
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h+/-:		e.g.	π0	

zT = pTa/pTt 
ξ = ln(1/zT)	

Both	par*cles	in	mid	rapidity:	tuning	more	into	later	stage:	CGC+QGP	



Taking	flow	(v2)	as	an example	

•  If	there	is	no	hydrodynamical	flow	in	p+A,	i.e.,	the	flow	is	
built	only	by	CGC	(leS)	

•  If	there	is	hydrodynamical	flow	in	p+A,	i.e.,	the	flow	is	built	
by	CGC+QGP	(right)	
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v2	

Δη=η1-η2	

A+A	

p+A	

v2	

Δη=η1-η2	

A+A	

p+A	



Why	RHIC	even	aSer	LHC?	
•  We	(think)	we	confirmed	that	RHIC	produced	QGP	and	also	at	LHC	

•  More	hard	sca]ering	background	at	LHC	as	compared	to	RHIC	
–  SoS	produc2on	is	increased	by	T	=	E1/4	while	hard	sca]ering	is	by	(√s)8		
–  RHIC	is	suitable	place	for	detail	inves2ga2on	of	QGP	

•  ATLAS	published	forw-backward	mul2plicity	correla2on	in	|η|<2.4	
–  arXiv:1606.08170	
–  Sensi2ve	ini2al	state	and	fluctua2on	of	longitudinal	expansion	
–  Rapidity	range	is	s2ll	in	QGP	region	

•  fsPHENIX	rapidity	is	closer	to	the	beam	rapidity	compared	to	LHC	
–  e.g.	ATLAS	measurement	in	|η|<2.4.	ALICE	FOCAL	upgrade:	(2.5<η<6)	

•  Note	that	the	beam	rapidity	for	2.76TeV	collisions	is	y=8.7,	Δy	=	8.7-6	=	2.7	
–  At	RHIC,	beam	rapidity	is	y=5.5,	so	if	we	instrument	up	to	y=3.5,	Δy=2.	

•  Covering	more	forward	rapidity	compared	to	LHC.	
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Addi2on	to	current	fsPHENIX	design	
•  Instrumenta2on	both	forward	and	backward,	ideally	

–  In	order	to	perform	wide-rapidity	correla2on	measurement	
–  We	can	do	forward-central	correla2on,	too	

•  EMCal	with	good	posi2on/energy	resolu2on	
–  Higher	granularity	
–  π0	and/or	η,	single	photon	separa2on	is	needed	
–  PbSc+pre-shower	is	another	op2on	

•  Good	tracking	in	high	mul2plicity	environment	

•  A	device	to	separate	π/K/p	(if	possible)	
–  K/p	separa2on	may	be	enough,	assuming	π0	is	well	iden2fied	down	to	

low	pT	in	EMCal	
–  A	candidate	device	is	2me-of-flight?	
–  Feasibility	study	is	needed,	which	is	not	trivial,	though.	
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To	conclude	
•  HI	measurement	at	forward	(and	backward)	rapidity	is	definitely	

new	and	there	are	likely	many	discoveries.	
–  Very	li]le	measurement	so	far	
–  Theory	community	rapidly	gets	interested	in	this	region	

•  Not	necessarily	to	be	done	in	most	central	HI	collisions	in	Au+Au	
–  Or,	we	can	collide	lighter	nuclei	

•  Close	tag	with	p+A/p+p	collisions	is	essen2al	

•  I	think	it	is	worth	men2oning	this	in	fsPHENIX	proposal	to	make	the	
case	stronger	
–  I’d	be	happy	to	write	one	sec2on	on	this	in	the	proposal	
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backup	
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Quark	Ma]er:	Quark	Gluon	Plasma	(QGP)	
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•  Quarks	and	Gluons	confined	in	nucleons	
will	be	liberated	in	a	hot	and	dense	
environment	
–  Quark	Gluon	Plasma	(QGP)	
–  Understanding	quark	confinement	
–  Origin	of	nucleon	mass	(Chiral	symmetry	

restora2on)	

•  This	phase	is	believed	to	have	existed	in	
the	early	Universe	
–  Possibly	exis2ng	in	the	core	of	neutron	stars	

•  Can	we	produce	QGP?	
–  Use	of	rela2vis2c	heavy	ion	collisions	
–  Hot	and	dense	medium	is	produced.	Energy,	

density	and	size	of	the	system	is	controllable	
–  Measure	thermodynamical	proper2es	such	as	

temperature	or	entropy	



2.	Jet	quenching	(new	from	RHIC)	
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Thermal	region	
QGP	
PerturbaAve	QCD	
(pQCD)	doesn’t	work	

Hard	region	
Jets	
PerturbaAve	QCD	
(pQCD)	works	

•  Yield	of	jets	can	be	calculated	using	perturba2ve	QCD	(pQCD)	
•  Exploring	non-perturba2ve	region	with	perturba2ve	probes	



Jets	in	p+p	(primordial	hard	
sca]ering)	
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coneR
Yield	in	A+A	collisions	∝	Ncoll	×	p+p	collisions	



Jets	in	QGP	
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•  Hard	sca]ered	partons	lose	their	energies	in	the	QGP	via	gluon	radia2on	
or	parton	collisions	

•  Jets	that	are	fragments	of	the	partons	accordingly	reduce	their	energies	

coneR
Yield	in	A+A	collisions	∝	Ncoll	×	p+p	collisions	

g	



Jets	in	QGP	
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•  Hard	sca]ered	partons	lose	their	energies	in	the	QGP	via	gluon	radia2on	
or	parton	collisions	

•  Jets	that	are	fragments	of	the	partons	accordingly	reduce	their	energies	

coneR
Yield	in	A+A	collisions	∝	Ncoll	×	p+p	collisions	 Reconstruc2on	of	jets	in	HI	

collisions	is	extremely	difficult	
because	of	this!	



Landau	and	Bjorken	expansion	models	
central	collision	of	equal	nuclei	at		 2 1/NN Ns mγ = ?

differ	mostly	by	ini2al	condi2ons	

proper	2me		 2 2zτ = −t
1 t + zln
2 t - z

η =space-2me	rapidity		
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Source	size	from	Interferometry	
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•  Interference	of	two	iden2cal	
par2cles	from	incoherent	sources	
–  First	applied	by	Hanbury-Brown	and	

Twiss	for	star	size	measurement	
–  Hanbury-Brown	Twiss	(HBT)	effect	

•  In	heavy	ion	collisions,	we	use	π,	K,	
etc.	as	probes.	
–  Measurement	can	be	basically	made	

at	freezeout		

Det	1	

Det	2	



Direct	photon	HBT	
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•  One	can	study	2me-dependent	size	of	the	QGP	
–  Photons	penetrate	systems.	Momentum	will	tell	the	2me	they	are	emi]ed.	
–  Angle	dependent	HBT	measurement	is	also	possible	à	shape	measurement	

•  This	measurement	will	be	best	done	at	RHIC.	Background	from	the	hard	
sca]ering	makes	the	measurement	difficult	at	LHC.	

Det	2	

γ

γ

γ

γπ

π

Det	1	 Det	1	

Det	2	



Shoo2ng	thermal	photons	
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•  Hadron	contamina2on	to	the	photon	samples	has	been	a	big	issue	

•  Smallest	hadron	contamina2on	when	using	photons	converted	to	electron	
pairs	

Internal	conversions	(virtual	photon)	 External	conversions	(real	photon)	



Direct	photon	flow:	v2	and	v3	
•  Subtract	hadron-decay	photon	vn	from	inclusive	photon	vn		

–  Decay	photon	vn	is	calculated	from	the	measured	π0	vn		
–  vn	for	other	hadrons	are	obtained	by	KET-scaling	+	mT	scaling	from	π0	and	Kaon	

•  Sizable	posi2ve	flow	is	observed.	
–  Similar	trend	as	h+/-	and	π0	(PRL	107,	252301	(2011))	
–  Late	stage	emission?	
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arXiv:1509.07758	
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3.	Direct	photons:	answer	to	suppression	
•  Is	the	suppression	due	to	energy	loss	of	hard	sca]ered	partons?	

•  Or,	the	hard	sca]ering	cross-sec2on	simply	does	not	scale	between	p+p	and	
Au+Au?	

•  We	need	something	produced	in	the	hard	sca]ering	and	emerging	unmodified	
	

Direct	photons	is	a	tool	to	answer:	

Jet	Produc*on:	Yield	∝	αs
2	 Photon	Produc*on:	Yield	∝	ααs	

g	



Cartoon	from	F.	Gelis	(e.g.	arXiv:1412.0471)	
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Similarity	in	A+A,	p+A	and	p+p?	
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•  p+p	and	p+A	collisions	have	been	used	as	a	reference	to	
inves2gate	the	phenomena	in	A+A	collisions	

•  In	very	high	energy	collisions,	the	situa2on	is	different?	



Flow	is	also	seen	in	p+Pb	and	d+Au	
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•  Flow	is	also	observed	in	most	central	p+Pb	and	d+Au	collisions	at	
LHC	and	RHIC	at	√sNN=	5.02TeV	and	200GeV,	respec2vely	

•  The	intensity	is	as	much	as	that	in	Pb+Pb	and	Au+Au	collisions	

•  Possible	QGP	produc0on	in	the	small	systems?	
PHENIX,	PRL114,	192301	(2015)	ATLAS,	PRC90,	044906(2014)	v2	

2.7×10-3	%	cent.	



2.	Energy	density	
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•  Total	transverse	energy	is	related	to	the	energy	density	(Bjorken	formula)	
	
	

•  5.7GeV/fm3	@	Au+Au	√sNN=200GeV	
(phase	transi2on	expected	at	~2GeV/fm3)	

dy
dE

A
T

BJ
⊥

=
τ

ε
1

τ:	QGP	forma2on	2me,	A⊥:		collision	area	

Total	Energy	Density	(Log)	

Center-of-mass	energy	(Log)	

*Central	collisions	
only	
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