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Introduction

Two different pictures of Nuclear Structure
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Magic numbers (2, 8, 20, ....).
Describes well S. P. excited states.
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Strong correlation between nucleons.
Cluster consists of several nucleons.
Clusters are weakly bound.

It is important to study appearance and disappearance of the cluster
correlation for better understanding of "Atomic Nucleus".



Excitation energy

Cluster States in N = 4n Nuclei

a clustering is an important concept in nuclear physics for light nuclei.

a cluster structure is expected to emerge near the a-decay thresholds in N = 4n nuclei.
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The 0+, state at E, = 7.65 MeV in 12C is a famous 3a cluster state.



How should we excite Cluster States?

Various reactions were devoted to excite cluster states.

Cluster transfer A Capture 7
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v Cluster-transfer reaction
® Complex reaction mechanism due to the low incident energy.
® Small reaction cross section.
® Limited energy resolution.
v' Low-energy resonant capture reaction
® Sensitive above the cluster-emission threshold only.
® Coulomb barrier disturbs the reaction near the threshold.

Inelastic scattering can be a complementary probe.

© Simple reaction mechanism at intermediate energies.
© High resolution measurement is possible.

© Sensitive to the entire E, region.

© Selectivity for the isoscalar natural-parity excitation..



EO Strengths and a Cluster Structure

Large EO strength could be a signature of spatially developed a cluster states.
T. Kawabata et al., Phys. Lett. B 646, 6 (2007).

Isoscalar EO transition: )
AL=0, AS=0, AT=0 B(E0;1S) = |ME(EO;1S)
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v SM-like compact 6S w.f. is equivalent to the CM w.f. at SU(3) limit.
v GS contains CM-like component due to possible alpha correlation.

0, state in 2C: B(EO; IS) = 12129 fm ME(E0;1S) = <Jf
Single Particle Unit: B(EO; IS), , ~ 40 fm*

v'SM-like Compact GS. ,
r
>
EO Operator

/ v'Developed Cluster State

Monopole operators excite T Yamada et al.,
inter-cluster relative motion. Prog. Theor. Phys. 120, 1139 (2008).

EO strength is a key observable to examine a cluster structure.



Inelastic Alpha Scattering

Inelastic a scattering is a good probe for nuclear excitation strengths.

- Simple reaction mechanism
- Good linearity between da/df2 and B(0).
20 (w1~ KN (@) BO)

- Folding model gives a reasonable description of do/df).

- Relatively large cross section. \?v%%%)% A
* High resolution measurement is possible.? &=
» Selectivity for the AT = 0 and ém 7 \/\
natural-parity transitions. g
* Multiple decomposition analysis Y W
el useful to separate AJ™. LRSS Mev
10 = ;A(AJ”)E(AJ”)MC Yo 6ecm(d§:g) 10 12 14

We measured inelastic a scattering to extract IS EO strengths
and to examine cluster structures in light nuclei.



Dilute Cluster States

as a Precursor of Dilute Nuclear Matter




Cluster Gas-like States in 12C
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Questions

» How do we confirm the dilute gas like structure
of the Hoyle state?

v' Radius of the Hoyle state.
v' Decay particle correlation.

> Do similar states exist even in heavier nuclei?

v' Precursor of the dilute nuclear matter.



Radius of the Hoyle State

Diffraction Pattern might reflect the radius.
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A. N. Danilov et al.,
Phys. Rev. C 80, 054603 (2009).



Radius of the Hoyle State

Transition density is overlap between the ground and excited states.
— Cut of f by the smaller state.

do/dQ (mb/sr)

- L M. Takashina et al., Phys. Rev C 74, 054606 (2006).
1o p\Fu139 MeV () F\E,~166 MeV (c); M. Takashina, Phys. Rev. C 78, 014602 (2008).
: — 20h: — 20h: 3 2d'
elastic ¢ N\gelastic inelastic TR
: RGM | >
] : I ~2bp
\\\ E elastic {_f' pr,
oy -0 o
: ——- (ii) ——- (ii) /2d
— original . — original 3 Near
— (i) L
VA — W) 0.2F ACM /v 98>0 -
.I VoA ACM ] , /\\".‘
' o TS
\ £ O
60 = B ey’ [R— (i) _
m. - RN ——= (i)
e -02F N\ —— original -
R, s (fm) R SR
Original (1) (1) (1)  (1v) 04 L (I.V ) .
460 392 436 505 6.18 0 4 8




Radius of the Hoyle State

Rainbow scattering ???
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o (J)(mb)

Scattering Radius

Controversial situation was clarified on the basis of the partial wave analysis.

_ \/ Io(JL)
L = JL M. Tomita et al.,
(r)

Scattering radius Ry =

= | B

JLﬁZ(JL) Phys. Rev C 89, 034619 (2014).
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do/dQ (mb/str)

Normalized Cross Section
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Inelastic Alpha Scattering
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The distorting potentials
should be different
between the normal and
dilute states.
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Distorting potential
enhances differences
between the normal and
dilute states.

Anguler dist. exhibits the signature... but the accurate calculation is required.




3a Decay of the Hoyle state

Decay mode of the Hoyle state is still controversial
Three decay mechanisms
v' Sequential decay through 8Be + a channel (SD)
v' Direct decay to 3a particles with equal energies (DDE)
v' Direct decay to 3a particles with uniform phase-space distribution (DD®)

Dilute gas-like state might prefer direct decay to sequential decay
Key observable: "¢" Highest normalized energy among three decay-a particles
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Direct decay < 0.2% (957%C.L.) M. Ttoh et al, Phys. Rev. Cett. 113, 102501 (2014)



U(r) (MeV)

Si

ngle particle potential

a particle is confined by the Coulomb barrier.
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] 4 Hoyle state function far from the pocket.
) ~
Yo s "5 w0 Decay particles should not carry
........... much information
) SEVEEE e : inside the Hoyle state.
VY
) We need a new strategy.
- HBT interference???
_12 T T T T
0 4 8 12 16

r (fm)

T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004).



a Condensed States in Heavier Nuclei

25 -
a condensed states in ®Be and*C | Na condensed state .
seem to be established. 9 “Ca /
75 a
a condensed states in heavier 215 “°Ar </£|
nuclei (A<40) are ; o 328 A 3.6 Mgy,
. . 288
theoretically predicted. : 24I\/Ig/|'</£|- 9y 3.2 ey,
Short range a-a attraction < ° 166°N§ Qd 24 M'GVMGV
Long range Coulomb repulsion 2> 12Q,f-<{|_'| 20y
= § <l 2.3 ev
@ I = 0.3 MeV el/— . ; - .
2 4 j 8 10 12
Energy of dilute Na state increase with N. T Yamada ':nd P. Schuck,
Na are confined in Coulomb barrier. Phys. Rev. C 69, 024309 (2004).

If such na condensed states are formed, they should sequentially
decay into lighter a condensed states by emitting a particles.

a decay measurement might be a probe to search for the a condensed state.



Low-Energy a Particle Emission

Coulomb barrier might disturb low-energy a particle emission.

Penetrability: exp(_% fa”erzm(v(r)—E))
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T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004).

Single particle potential
for a particle in 2°Ne

U,(r)=Vy + Vs, +V,

R.=12(16"+4")=49
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Dilute nature suppresses Coulomb barrier.

Penetrability is still low, but low-energy a emission could be a signature
of the Na condensed states owing to the large overlap between them.



Inverse vs Normal Kinematics

= Inverse Kinematics
© Easy to cover large angular acceptance for decaying particles

© Incident particle and decaying particle has the same p/A and
p/z. This makes background at forward angles

© Difficult to determine E,,

= Normal Kinematics
© Easy to determine E, and J™
© Difficult to cover large angular acceptance

“normal kinematics” . . /
o i inverse kinematics/

{ )
\.
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Inverse Kinematic Measurement at RCNP

E391 (H. Akimune et al.)
o LAS at O degree.

a0 +50 mr x £30 mr
(+3deg x +3 deg)

a 0p/p=307"%
= Segmented Hodoscopes at FP
= S




N, (Forward)

Multiplicity of alpha particles

RCNP E391 (H. Akimune et al.)

N, (Backward) N, (Backward)

High multiplicity events were observed.
Analysis is still going on.



Future Perspective  riheral

HELIOS type detector as a recoil particle detector to determine E,.
He gas jet

Heavy Ion
beam

HELIOS type
detector for
recoil particle

Large acceptance spectrometer
to detect decay a particles




Normal Kinematic Measurement at RCNP

Background-free measurement at extremely forward angles

x10°0 50,5 4 '
-~ S EM _gg%ﬁd)v 4 Si counter telescopes
=.le 2 6% 00° © (5 layers) are installed in ~ som .
STHE |2 ' the SC, and cover 2.5% of e s
é * 41 (309 mSr).
g
> '
: (a,a') @ 400 MeV
V LLM MWWW Ojgp= 0°~19°
0 ML Uy 24Mg, 12C, 13¢C, 1B
Excitation Ener eV
B ey ZE = 50 keV (FWHM)




\ Mul’rlpole Decomposmon Analysis
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Fine structure in AL=0 strengths was observed.



Energy of Decaying Particle (MeV)
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Decay Particle Measurement

Decay to the proton and alpha emission channels were identified.
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separated.
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Highly Excited Region

6a condensed state was searched for in the highly excited region.
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N. Yamada and P. Schuck,
Phys. Rev. C 69, 024309 (2004).

* 6a condensed state is expected

at 5 MeV above the 6a threshold.

-E,~285+5=335MeV
* No significant structure suggesting
the 6a condensed state.

— Several small structures
indistinguishable from the
statistical fluctuation.

- Need more statistics.
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8Be Emission Events

8Be(0*,) emission events were indentified from 2a emission events by E, in 8Be.
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Several states at 20.5, 22.0, and 24.3 MeV
were observed near the 12C+3a threshold.
Possible structures were seen above the 6a
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threshold although statistically poor .
— Need more statistics.



Future Perspective

MATIKo TPC is developed by the Kyoto-RCNP group.
It will be installed at the target posmon of Grand Raiden.

A 3 [ [ I
CSl (Tl) : ;5,140 T “TAnode track T E,”O T “Calhode frack
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- Scattered a par"rlcle and

>
Al o L 3 decay a particles are clearly observed. L
Si 10 cm Z (mm) X )
P e ¢ Beam: “He @ 12.5 MeV/u
" Cathode @ Gas: He(93%) + iC,H,o(7%) @430 hPa

€ Detect low-energy decay particles with large angular coverage.
€ Introduce p-PIC + GEM for multiplication and detection of electrons.

d(2 for previous detector: 309 mSr — MATIKo will gain solid angle by a factor of
d() for MAIKo: ~ 4m (0.3/4m)° ~ 5 x 10° for 6a measurement.



Cluster Structure in unstable nuclei



Cluster Structures in unstable nuclei
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Can proton-rich nuclei also form a molecular structures?

We propose a study of the mirror symmetry of clustering in '°C and °Be.



Energy ( MeV )

Mirror system of 1°C & 1°Be

Mirror system provides a insight to cluster structures.
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Energy shift will be observed in 0,* states ( a+®He/®Be with L=2).
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Monopole excitations in 10C

Monopole strength is a key parameter to pin-down cluster structure.

a + %Be(2Y)
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GTCM prediction by M. Ito
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B(EO,IS) is enhanced for cluster excitations.
B(EO, IS) reflects the cluster structures.
Measure B(EO,IS) systematically by °C(a, a') scattering.



Challenges in inverse kinematics

Measure the B(EO,IS) by missing mass spectroscopy with 10C beam.
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MAIKo test experiment

13C(a a) @60 MeV/u > Similar kinematics to 19C(a,a').

1000 T T
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ool Break up event
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1000 =

Recoil energy (MeV)

0 50 100 150 200 250 .
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Recoil trajectory was reconstructed by Hough transform method.
TPC self trigger > Sensitivity down to 1 MeV.

Clear correlation from elastic scattering was observed.

The gas pressure will be reduced to detect ~0.5 MeV recoil a.
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