2016/07/26 VTX Japan meeting

High-multiplicity BG in Run14 AuAu

Kazuya Nagashima (Hiroshima Univ./RIKEN)

✓ Fraction of photonic electron

 π^0

η

З

3.5

4

4.5

5

Direct γ

Dep template fit for high pT mis-ID hadron

[Template fit] dep(inc. e) = dep(e) + dep(charged hadron)

dep(electron) after subtracted RICH swap
> low pT dep (fix pt range 1.5-2.0 GeV)
dep(charged hadron)
> same pT range of inc. e

fit range @ -4 < dep < 4fit with chi-square

✓ Dep template fit (MB)

2016/7/26

p_ = 7.0-9.0 GeV cent0

- inclusive

electron

hadron

Echisquare/ndf = 0.6

dep(inc. e) = dep(e) + dep(hadron)
dep(charged hadron)

[Template fit]

> same pT range dep(electron) > fix pT range (1.5-2.0 GeV)

- template fit works well for all pT range!!
- get hadron contamination at 5.0-7.0GeV, 7.0-9.0GeV

✓ Ratio of data to fit (MB)

[Template fit] dep(inc. e) = dep(e) + dep(hadron)

Ratio of data to fit is almost 1

2016/7/26

K.Nagashima

Fraction of mis-identified hadron

K.Nagashima

2016/7/26

- get normalization factor from -2 < dep
- compare fraction of both RICH swap and template fit
- two method are consistent below 5 GeV
 - > open marker is RICH swap
- > filled marker is template fit

Template fit agree RICH swap!! Template fit will be applied for pT > 5GeV

Fraction of mis-identified hadron

[Fraction of mis-identified hadron] Combine two method

- RICH swap for pT < 5GeV
- template fit for 5GeV < pT
- not good at high pT
 because of very low statistics
 fit indicator should be change
 - from chi-square to log-likelihood

Background normalization and DCA template

✓ Expected BG components

+ Mis-identified hadron (almost done)

- RICH swap for pT < 5GeV
- dep template fit for 5GeV < pT (new)</pre>

+ Photonic electron (almost done)

- residual template fit (new)
 - > compare between Run14 and PPG182

+ High-multiplicity

- small angle rotation
- (embedding study)
- + J/psi and ke3 (done)
 - published data in Run4

✓ BG: High-multiplicity

✓ <u>High-multiplicity BG</u> - CNTrack -> true, SVX hit -> fake

<u>Small angle rotation</u>

- reconstruct fake track
 for high-multiplicity BG at VTX
- similar method as RICH swap
- CNT track is rotated 10 degrees at VTX
 +φ, -φ, +θ, -θ, +φ.... (track by track)
- SvxCentralTrackBackList (made by Takashi)
 - > reconstructed by SvxCentralTrackBG_VarArray

Embedding study for High-mutiplicity BG

- + embedded simulation
 - require VTX hit at BOB1 (2hit)
 - embedding code has bug
 chi2ndf distribution is odd
 - > need more investigation
- + small angle rotation
 - reproduce high-multiplicity BG almost
 - but embedded sim. has asymmetry...

+ <u>To Do</u>

- modify embedding code
- apply to real data

🗸 To Do

- ✓ <u>BG normalization</u>
 - Mis-ID hadron
 - > apply log likelihood fit to template fit
 - Photonic
 - > increase MC statistics (after new production)
 - High-multiplicity
 - > check other rotation degrees such as 1 or
 - > investigating embedding code...
 - > apply real data
- ✓ HFe invariant yield
 - estimate by photonic fraction (method1)
 - estimate by acc. * reco. efficiency (method2)

✓ Summary of survival rate

2016/7/2

Photonic e simulation file

multi-pi0 simulation (80M)

- 8 pi0 generated in one event

- output at /phenix/analysis/vtx/run14AuAu/mult_piz/pisaToDST multi-eta simulation (80M)

- 8 eta generated in one event

- output at /phenix/analysis/vtx/run14AuAu/mult_eta/pisaToDST multi-gamma simulation (80M)

- 8 gamma generated in one event

- output at /phenix/analysis/vtx/run14AuAu/mult_gamma/pisaToDST

Photonic simulation

2016/7/2

✓ data/fit for π^0 (mod. hagedorn + power low)

16

data/fit for direct photon

17

