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Production Mechanism of
Forward Neutron
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pT+p Forward Neutron Ay,
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The First Time Ever
High Energy p'+A Collisions
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A-Dependent Ay (inclusive)

0_2; pT+A — n+X

Vs= 200 GeV
xF>0.5

0'1 S - 0.3<6<2.2 mrad

22% scale uncertainty not shown

0.1+

0.05F

Present Frame Work

i | | | | | | | | | | | | | | | | | | |
0 50 100 150 200
A (atomic mass number)




A-Dependent Ay (inclusive)
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Primakoff Effect
Electro-Magnetic
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Primakoff Effect
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The LHCf experiment
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UPC Monte Carlo
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Abstract We present a hadron production study in the for-
ward rapidity region in ultra-peripheral proton—lead (p 4 Pb)
collisions at the LHC and proton—gold (p + Au) collisions
at RHIC. The present paper is based on the Monte Carlo
simulations of the interactions of a virtual photon emitted by
a fast moving nucleus with a proton beam. The simulation
consists of two stages: the STARLIGHT event generator sim-
ulates the virtual photon flux, which is then coupled to the
SOPHIA, DPMIJET, and PYTHIA event generators for the simula-
tion of particle production. According to these Monte Carlo
simulations, we find large cross sections for ultra-peripheral
collisions particle production, especially in the very forward
region. We show the rapidity distributions for charged and
neutral particles, and the momentum distributions for neutral
pions and neutrons at high rapidities. These processes lead to
substantial background contributions to the investigations of
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Full Description of Ay
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Can we identify Primakoff

events?
Semi-Inclusive
ity -
A= loa%- BBC n—=s| ZDC

Primakoff MC : SOPHIA
G. Mitsuka, Eur. Phys. J.C. (2015) 75:614
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BBC Tagging and Vetoing
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Fractions

p+p p+Al p+Au
Inclusive 36 9% 34 9, 13 %
BBC veto 24 9, 31 9% 6/ %

BBC tag 36 % 34 9 13 9
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Coulomb-Nuclear Interference
(CNI)
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Elastic Ay at Coulomb Nuclear Interference
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Runl5 Au,Al beam + p'target

Plot from Oleg Eyser (The 2015 PSTP workshop)
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Underlying Mechanism Comparison
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Coulomb-Nuclear Interference in
Forward Neutron Production

T

Proton
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Diffractive Process Required?



Non-Diffractive Events

Proton
- Little chance to be same final state |
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Summary

« Observed large asymmetry in very forward neutron
Ay in p+A collision.

« Strong A-dependence in neutron + BBC vetoed
events and flips the sign of Ay between p+p and p
+Al.

* |[ndication of EM from related experiments
— LHCf observed Primakoff Peak in p+Pb->n+X

— Primakoff MC indicates EM is relatively enhanced in
BBC veto events where large positive Ay is observed.

— Elastic p+p, p+C at high energy also shows Ay<59%,
due to interference between EM and strong force.



Primakoff Effect
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Primakoff Paper

Photo-Production of Neutral Mesons in Nuclear
Electric Fields and the Mean Life of
the Neutral Meson*

H. PRIMAKOFFt

Laboratory for Nuclear Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts

January 2, 1951

T has now been well established experimentally that neutral
m-mesons (7°) decay into two photons.! Theoretically, this
two-photon type of decay implies zero #° spin;? in addition, the
decay has been interpreted as proceeding through the mechanism
of the creation and subsequent radiative recombination of a
virtual proton anti-proton pair.? Whatever the actual mechanism
of the (two-photon) decay, its mere existence implies an effective
interaction between the #»® wave field, ¢, and the electromagnetic
wave field, E, H, representable in the form:

Interaction Energy Density =»(%/uc)(hc) toE-H. (1)

Here ¢ has been assumed pseudoscalar, the factors #/pc and
(hc)~% are introduced for dimensional reasons (u=rest mass of #?),

Henry Primakoff, Phys. Rev. 81, 899 (1951). 30



Primakoft Experiment (Hall-

PRL 106, 162303 (2011)
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Nuclear Electromagnetic Form Factor
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Primakoff Summary fv*

Photon pick up from the Coulomb .
field of nucleus A,Z

Out-going products through Primakoff
effect has strongly forward boosted.

Primakoft effect is suppressed rapidly
as a function of emission angle or
momentum transfers.

Primakoff effect gets stronger as a
function of Z.
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The origin of Asymmetry

9]

VOLUME 64, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JANUARY 1990

cording to Eq. (1), the asymmetry seen in photoproduc-
tion due to the interference between A and N7 1s expect-
ed in coherent Coulomb x¢ production by polarized pro-
tons, using the same region of the nc-p invariant mass.
Therefore this process may be used to measure the polar-
ization of the proton at high energies.® Until now, there
has been no measurement of the asymmetry in the nu-
clear coherent process.

The cross section for the Coulomb coherent process
(1) has a sharp peak at '~10"° (GeV/c)? and de-
creases rapidly as 7'/t2. The “width” of the Coulomb
peak is determined by the detector resolution. Diffrac-
tive dissociation due to the strong interaction is also
present, but it has a much slower ¢’ dependence.

We have measured the analyzing power (azimuthal
asymmetry) of nuclear Coulomb coherent production
from a Pb target by using the newly constructed 185-
GeV/c Fermilab polarized proton beam.” The beam po-
larization is 45% and this is further described in Ref. 7.
To reduce certain systematic errors, the spin direction of
the incident proton was flipped every 10 min using a
spin-rotator system.’

monitored to a 1% accuracy with a xenon-flash-tube sys-
tem. A 30-GeV positron beam was used to calibrate the
calorimeter. The measured energy resolution is 3%
(rms) at 30 GeV and the position resolution is 2 mm
(rms). The measured 7° energies in this experiment
ranged from 25 to 75 GeV.

A set of thin plastic scintillation counters (TP1) is
placed downstream of the magnet and provides the
trigger for the scattered protons. The set consists of four
counters arranged to distinguish protons scattered to the
left, right, up, and down. The calorimeter also has left,
right, up, and down sections, and signals from each sec-
tion are summed for the trigger. In the coherent process
where ¢’ is almost zero, the 7° and scattered protons are
coplanar. Thus the trigger logic is such that the energy
deposit is larger than 25 GeV in the left half of the
calorimeter, less than 5 GeV in the right half, and a pro-
ton hits the right segment of TP1. There are four such
combinations to cover the whole range of azimuthal an-
gles. To reject the events which have any extra particle
besides a proton and 7%, veto counters are included in the
trigger logic.



Experiment
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FIG. 1. Schematic view of the experimental setup. The di-
mensions transverse to the beam are not scale.
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Invariant Mass Distribution
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to the AT(1232) and N*(1520) resonances are shown. Re-
gions I and II are defined in the text.



-t Distribution
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Origin of the Asymmetry

Spin flip Spin non-flip

A*(1232) P33 N*(1440 and higher) P11

L Nr (>99%) L N (60~70%)
N (30~40%)

had had _+ EM had _ had EM - EM EM -
AN x ¢n0n—ﬂip¢ﬂip S1n 51 + ¢n0n—ﬂip¢ﬂip S1n 62 + ¢ i i Slné + ¢non—ﬂip¢ﬂip SIn 54




Fermi Experiment Summary

« Large asymmetry observed in Fermi
forward piO production in pol(p)+Pb.

« Large asymmetry is observed by selecting
Primakoff kinematics (Small -t).

* The asymmetry is known in photo pion
production as a conseguence of
interference between Delta and N*,
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Comparison between two
| Fermi BNL

Beam Energy [GeV] 185 100

Js [GeV] 19.5 200

Target Pb Au

Observables P+ aP n ( + charged)

t' < 0.001 0.02<-t<0.5

M 1.36 < M(n®p)<1.52 ?

Ay -0.57 £ (0.12),,+ 0.21 - + 0.27 £ 0.003 (BBC
0.18 veto)

If the asymmetry is induced at D or N* excitation, does the sign
suppose to be the same?
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0.18 veto)
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UPC MC
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What we can learn from Fermi Exp.?

« |f we consider the difference between PHENIX
neutron and p+pi0 as just a difference in the
decay channels from Delta and N*, then both
mechanisms are similar.

« PHENIX —t Is expected to be larger than Fermi,
so CNI may be important in PHENIX.

— Although Fermi claims A s Is zero at CNI, it may be
just because of accident:
— Not straight forward to perform kinematic
decomposition in PHENIX data.
« Sign of Ay are opposite between two
experiments. Are we measuring the same Ay?
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Comparison between two

| Fermi____| _ PHENIX STAR17

Beam Energy

[GeV] 185 100 255

Js [GeV] 19.5 200 22
Target Pb Au Al/Sn/Au
Observables D + 10 n ( + charged) n(+ chg]?rged)
t' < 0.001 0.02<-t<0.5

M 1.36 < M(n®p)<1.52 ? ?

Ay -0.57 £(0.12),+ + 0.27 £0.003

0.21 -0.18 (BBC veto)
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Primakoff Diagrams
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Neuclear/Nucleon Photo-Excitation

sant  (e,e’) spectrum

resonance

Quasielastic.
do A .
dw WEP INELASTIC
W EMC IZ4
| T 1 ot
Q? o Q? w
o = > + 300 MeV
PROTON
d_G Elastic A .
do N DEEP INELASTIC
“QUARKS”
: .
Q? w
o m Generic Electron Scattering

at fixed momentum transfer



