Hard X-ray Luminosity Function of Tidal Disruption Events: First Results from MAXI Extragalactic Survey

MAXI 7 years @ RIKEN, 6 December 2016

T. Kawamuro (Kyoto Univ.),

Y. Ueda (Kyoto Univ.), M. Shidatsu (RIKEN), T. Hori (Kyoto Univ.), N. Kawai (Tokyo Tech.), H. Neogro (Nihon Univ.), T. Mihara (RIKEN)

Tidal Disruption Events (TDEs)

- A star is disrupted by a Supermassive Black hole (SMBH) when the star falls inside the tidal disruption radius (*r*_T).
- The SMBHs (M_{BH} > 10⁸ M_{sun}) will not cause the TDEs due to $r_{T} < r_{sch}$ for stars lighter than the solar mass.
- The luminosity suddenly rises and follows power-law decay, of which index is ~ -5/3 (Phinney 1989).

Tidal Disruption Events (TDEs)

- A star is disrupted by a Supermassive Black hole (SMBH) when the star falls inside the tidal disruption radius (*r*_T).
- The SMBHs (M_{BH} > 10⁸ M_{sun}) will not cause the TDEs due to $r_{T} < r_{sch}$ for stars lighter than the solar mass.
- The luminosity suddenly rises and follows power-law decay, of which index is ~ -5/3 (Phinney 1989).

Main Topic

• Derivation of TDE Luminosity function (= LF, Mpc⁻³log L^{-1} yr⁻¹), where *L* is "*peak*" luminosity.

From the LF, we can know ..

- Effect on the SMBH mass growth history.
- Prediction of TDE number detected by a given observatory in the future.

Detection of TDEs with MAXI

- All-sky survey with MAXI is highly useful to detect transient TDEs
- We analyzed the all-sky data obtained every 30/90 days to search for transient events, such as TDEs (2009/09-2012/10).

Detection of TDEs with MAXI

- All-sky survey with MAXI is highly useful to detect transient TDEs
- We analyzed the all-sky data obtained every 30/90 days to search for transient events, such as TDEs (2009/09-2012/10).
- We adopted the two criteria of "1) high amplitude" and "2) -5/3 powerlaw decay of light curve" to identify TDEs.

X-ray Survey for TDEs

• LF is first based on SMBH mass function (Mpc⁻³M_{BH}⁻¹)

 $\psi(M_{\rm BH*}; M_{\rm BH}) dM_{\rm BH} = \psi_0 \left(\frac{M_{\rm BH}}{M_{\rm BH*}}\right)^{\gamma} e^{-\left(\frac{M_{\rm BH}}{M_{\rm BH*}}\right)^k} \frac{dM_{\rm BH}}{M_{\rm BH*}} \quad (\gamma = -1.24, k = 0.8)$

- LF is first based on SMBH mass function (Mpc⁻³M_{BH}⁻¹) $\psi(M_{BH*}; M_{BH}) dM_{BH} = \psi_0 \left(\frac{M_{BH}}{M_{BH*}}\right)^{\gamma} e^{-\left(\frac{M_{BH}}{M_{BH*}}\right)^k} \frac{dM_{BH}}{M_{BH*}} \quad (\gamma = -1.24, k = 0.8)$
- The BH mass dependence of the TDE rate (yr⁻¹; Stone+14). $\xi \propto M_{\rm BH}^{\lambda}$ ($\lambda = -0.4$)

- LF is first based on SMBH mass function (Mpc⁻³M_{BH}⁻¹) $\psi(M_{BH*}; M_{BH}) dM_{BH} = \psi_0 \left(\frac{M_{BH}}{M_{BH*}}\right)^{\gamma} e^{-\left(\frac{M_{BH}}{M_{BH*}}\right)^k} \frac{dM_{BH}}{M_{BH*}} (\gamma = -1.24, k = 0.8)$
- The BH mass dependence of the TDE rate (yr⁻¹; Stone+14). $\xi \propto M_{\rm BH}^{\lambda}$ ($\lambda = -0.4$)
- Assume that the "*peak*" luminosity is proportional to the Eddington luminosity. \rightarrow LF (Mpc⁻³yr⁻¹L⁻¹)

$$\frac{\mathrm{d}\Phi(L_{\mathrm{x}},z)}{\mathrm{d}L_{\mathrm{x}}}\mathrm{d}L = (1+z)^{p}\psi_{0}\xi_{0}\left(\frac{L_{\mathrm{x}}}{L_{\mathrm{x}*}}\right)^{\gamma+\lambda}e^{-(\frac{L_{\mathrm{x}}}{L_{\mathrm{x}*}})^{k}}\frac{\mathrm{d}L_{\mathrm{x}}}{L_{\mathrm{x}*}}$$

$$\bigwedge \text{Redshift evolution is also considered.}$$

- LF is first based on SMBH mass function (Mpc⁻³M_{BH}⁻¹) $\psi(M_{BH*}; M_{BH}) dM_{BH} = \psi_0 \left(\frac{M_{BH}}{M_{BH*}}\right)^{\gamma} e^{-\left(\frac{M_{BH}}{M_{BH*}}\right)^k} \frac{dM_{BH}}{M_{BH*}} (\gamma = -1.24, k = 0.8)$
- The BH mass dependence of the TDE rate (yr⁻¹; Stone+14). $\xi \propto M_{\rm BH}^{\lambda}$ ($\lambda = -0.4$)
- Assume that the "*peak*" luminosity is proportional to the Eddington luminosity. \rightarrow LF (Mpc⁻³yr⁻¹L⁻¹)

$$\frac{\mathrm{d}\Phi(L_{\mathrm{x}},z)}{\mathrm{d}L_{\mathrm{x}}}\mathrm{d}L = (1+z)^{p}\psi_{0}\xi_{0}\left(\frac{L_{\mathrm{x}}}{L_{\mathrm{x}*}}\right)^{\gamma+\lambda}e^{-(\frac{L_{\mathrm{x}}}{L_{\mathrm{x}*}})^{k}}\frac{\mathrm{d}L_{\mathrm{x}}}{L_{\mathrm{x}*}}$$

[\] Redshift evolution is also considered.

- We considered two LFs of TDEs w/ jets and those w/o jets using the fraction of TDEs w/ jets, f_{jet}.
- Only TDE rate ($\psi_0 \xi_0$) and the fraction (f_{jet}) are free pars. 11/15

TDE Hard X-ray LF

- Fitted the data (z, L_x) with the "*Maximum Likelihood*" method.
- Our calc. does not depend on jet detection by considering all possible L_x variation due to presence or absence of the jets and the inc. angles.

Mass Accretion History

• SMBH mass density calculated by accumulating the accreted mass by AGNs (e.g., Ueda+14).

13/15

Mass Accretion History

• SMBH mass density calculated by accumulating the accreted mass by AGNs (e.g., Ueda+14).

 Contribution of TDEs to the SMBH mass density is much smaller than that of AGN.

Summary

- 1. All-sky monitor with MAXI has detected 4 TDE candidates in the 37-months since 2009.
- 2. We derived the hard TDE X-ray luminosity function for the first time.
- 3. TDEs do not strongly contribute to the total SMBH mass density evolution since $z \sim 1.5$.