

A MULTI-WAVELENGTH VIEW OF JETS IN ACCRETING BINARIES

STÉPHANE CORBEL (UNIVERSITY PARIS DIDEROT & CEA SACLAY & OBSERVATOIRE DE PARIS

OUTLINE

General introduction : disc, jets and towards a general unification.

Compact jets: another flavor of jets

High energy emission from jets

Transients jets in X-ray binaries

Interactions jet/ISM

INTRODUCTION

JETS ARE EVERYWHERE

Many open questions: Jets: formation, SED, power, feedback ? Physics on different scales, coupling ? Scaling laws, universality (NS, WD,, AGNs,...) ?

Swift J1644+57: Onset of a relativistic jet

Quasar 3C175 YLA 6cm image (c) NRAO 1996

and strongly related to accretion

JETS IN BLACK HOLE TRANSIENTS

UNIFICATION

TWO FLAVORS OF RELATIVISTIC JETS ON TWO VERY DIFFERENT SCALES !!!!

Compact, self-absorbed jets Discrete ejections events (on mas scale = 10s a.u.).

Stirling et al. 2001

(superluminal, ~ ballistic).

+ long term action of the jets on the ISM: lobes, hot spots...

X-RAY ACTIVITY

X-ray evolution (energy spectrum + power spectrum): different states

Hardness Intensity Diagram: hardness = ratio of counts in 2 different bands (model independent)

Disc Fraction Luminosity Diagram (DFLD) : hardness = non thermal power-law/total flux. Allows comparison between different populations.

THE UNIFIED MODEL

HID

Major radio flare(s)= Transient jets

<1

Jet emission quenched in soft state (up to / 700).

Unified model of: Fender et al. 04 Corbel et al. 04

0-6	
	soft
	spectrum
rav	

hard spectrum

Origin of the major flare ???? Internal shocks (Fender et al. 04) or ejection of the «corona» (Rodriguez et al. 03) ?

Compact jets in the hard state

Quiescence

UNIFICATION IN GALACTIC COMPACT OBJECTS

COMPACT JETS IN THE HARD STATE

MORE SPECTRAL BREAK EVOLUTION

TYPICAL SED OF BH IN THE HARD STATE

R/X CORREL. STATE OF THE ART

THE MOST UP TO DATE VERSION OF THE R/X CORRELATION

Incl. new data of GX 339-4 ove 15 years and multiple outbursts: very stable correl. (Corbel et al. 2013a). Hard S.

Quiescent BHs consistent with «standard» correl.

- More and more sources below the std correl: the «outliers». (Corbel et al. 04, Coriat et al. 11, Gallo et al 12.)
- Transition between 2 groups: Outliers move back to the std correlation @ low flux

* Properties of the outliers ? The odyssey of H 1743-322 over the course of seven outbursts ⇒ Steeper slope: 1.4 instead of 0.6 (Coriat et al. 11).
* Transition: now also MAXI J1659-152 (Ratti et al. 12) & XTE J1752-223 (Jonker et al. 12).

INTERPRETATION OF THE CORRELATIONS

Outliers = X-ray loud ⇒ Origin of the dichotomy: ≠ X-ray mechanisms have ≠ radiative efficiency.

Possible to explain the 1.4 correlation index with models such as LHAF, ADC, hot-JED.

Transition = possible switch

LHAF to ADAF like, due change in α parameter (henceforth m dot critical in LHAF) for different sources (Xie & Yuan 2012)

* Outliers = radio faint. Origin of the dichotomy related to jet properties. $\Rightarrow Q_{jet} = f_j \dot{M} c^2$ (e.g. Falcke & Biermann 95). If f_j variable for outliers (e.g. $f_j \propto \dot{M}$) then X-ray emission for both population could still be related to radiatively inefficient accretion flow in the hard state.

FUNDAMENTAL PLANE OF BH ACTIVITY

PROSPECT WITH THE SKA

HE EMISSION FROM THE JETS OF V404

CYG

SEARCH FOR HE GAMMA RAYS FROM V404 CYG

GAMMA RAYS DETECTED FROM V404 CYG?

* Peak flux = $(2.3\pm0.8) \times 10^{-6}$ ph cm⁻² s or L(>100 MeV) ~ 2 x 10⁻⁶ erg s

- ** Photon spectrum very soft dN/ -3.5±0.8 dE~E
- * TS~15.3 not significant on its own to claim a detection but association with period of brightest radio/ X-ray activity followed by marked change in MWL properties makes it compelling

Loh et al. 2016, MNRAS, 462, L11

TAPING ROTATION ENERGY FROM BH ?

* Pair production (opacity) implies GeV away in jets.

- Spin of black hole a>0.98 from reflection spectrum (Walton et al. 2016).
- Gamma rays only for magnetically-arrested disks (MAD, McKinney et al. 2012) tapping BH rotational energy (Blandford & Znajek 1977)
- * Accumulation of poloidal magnetic flux in inner region close to BH.
- Destruction of MAD by accretion of B opposite polarity: X-ray state changes ? (Dexter et al. 2014)
- Gamma-ray flux variability & mildly relativistic ejection as MAD destroyed & rebuilt (O'Riordan+ 2016a)
- **Bright gamma-ray emission** from jets after ejection

O'Riordan et al. 2016a+b

STATE TRANSITION AND THE UNIFIED MODEL

TRANSIENT JETS

JETS INTERACTION WITH THE ISM

Corbel et al. 2002

Origin of the event = big flare during the 1998 outburst

Jets deceleration + Particles re-acceleration up to TeV energy. Synchrotron X-rays. Few more cases now.

EVOLUTION OF THE JET

Migliori, Corbel et al., to be submitted

polarized radio emission: signature of particle acceleration process in action.

Direct obs. of reverse shock ?

Shock-compressed B-field

CONCLUSIONS

- **Compact jets** in the hard state: a universal radio/X-ray correlation ⇒ diagnostic of emission processes. Similar coupling in AGNs (low m dot).
- * Nature of the «outliers» = a radiative efficient flow in the hard state ? Extension to AGNs ?
- Transients jets in all XRBs (low B, you need a disc): uniform jet line. Questioning the role of central object in jet formation (BH spin, potential well, GR)?
- * Jets feedback on the ISM: particles re-acceleration. Direct observations of a reverse shock in XTE J1550-564 ?
- ** High energy emission now observed in jets with Fermi/LAT !
 ** New prospects for transients with the SKA !! But needs all sky X-ray monitor.