

Novae with super-Eddington luminosities

Toshikazu Shigeyama, University of Tokyo Based on Ohtani, Morii, TS 2014 and Wada, TS 2016

MAXI J0158-744

Morii+ 2013

MAXI J0158-744

- Peculiar spectrum at t=1296 s
 - Prominent emission line at 0.92 keV due to Helike Ne ions (EW=0.32 keV+0.21-0.11)
 - No other lines (e.g., due to H-like Ne ions)
 - kT~0.33 keV black body

Morii+ 2013

Line blanketing in accelerating nova wind

- In expanding matter with dv/dr>0
- photons emitted by an ion are red-shifted in the rest frames of the other ions
- photons degrade their energies by subsequent scattering

Model of accelerating wind

• Steady states
$$v \frac{dv}{dr} = \frac{\kappa L}{4\pi r^2 c} \left(1 - \frac{L_{\rm Edd}}{L}\right)$$

• constant L(=8x10³⁹ erg/s)

- the photospheric radius=2,300 km (kT_{eff}=0.33 keV)
- The optical depth of the wind above the photosphere=2/3→mass loss rate~1.4x10⁻⁶ Msun/yr
 - \cdot cf. ~10⁻⁴ Msun/yr for Novae
- · Photo-ionizing plasma (XSTAR)

Model spectra

- Radiative transfer of photons emitted from the photosphere
 - · Monte Carlo method
- $\cdot\,$ Emission line at 0.92 keV
 - wiped by Oxygen
 - $\cdot X_0 < 5x10^{-9}$ is needed
 - CNO cycle converts Oxygen to Nitrogen
 - Nitrogen sharpens the shape of the line
 - · To obtain EW~0.3 keV, X(Ne)>0.001

Conditions to reproduce the observations

- · Low mass loss rate
- Enhanced Ne abundance (a factor of >5) indicating ONe White dwarf
- High velocities up to ~a few x10,000 km/s
- · Acceleration outside of the photosphere
 - Previous nova wind models show acceleration only in the photosphere (Optically thick wind model, e.g., by Kato & Hachisu 1994)
- · Mass of the WD close to the Chandrasekhar limit

Remaining problems

- The origin of high luminosities
 - CNO cycle on the surface of a WD?
 - Construction of new nova wind models including optically thin region
- Ignition mechanism
 - · A small amount of the involved mass $\sim 10^{-8}$ Msun
 - · Dynamical?
 - · Is Be star companion a key? Circumstellar disk

Novae with super-

Eddington Luminosities?

Higher luminosity requires sonic point closer to the photosphere

- Extension of optically thick wind models (Wada & TS 2016)
 - \cdot including the optically thin region

•

- relax the diffusion approximation in the flux calculation
- M1-closure algorithm to calculate the flux in the optically thin region

High luminosity models

- A sequence of steady state models for each WD mass
- \cdot We obtain models
 - in which matter is accelerated outside of the photosphere
 - slightly brighter than previous models
- · But
 - $\cdot \,$ not so high velocities
 - $\cdot \,$ not so luminous
- · as MAXI J0158-744

above the photosp Wada & TS 2016

High luminosity models

0.0

3

- A sequence of steady state models for each WD mass
- \cdot We obtain models
 - in which matter is accelerated outside of the photosphere
 - slightly brighter than previous models
- · But
 - $\cdot \,$ not so high velocities
 - $\cdot \,$ not so luminous
- · as MAXI J0158-744

5

4

6

7

Wada & TS 2016

Future prospects

- Neutron star instead of White dwarf?
 - Be star companion indicates massive progenitor?
 - High velocity
 - · Small photosphere
- Not in steady state?