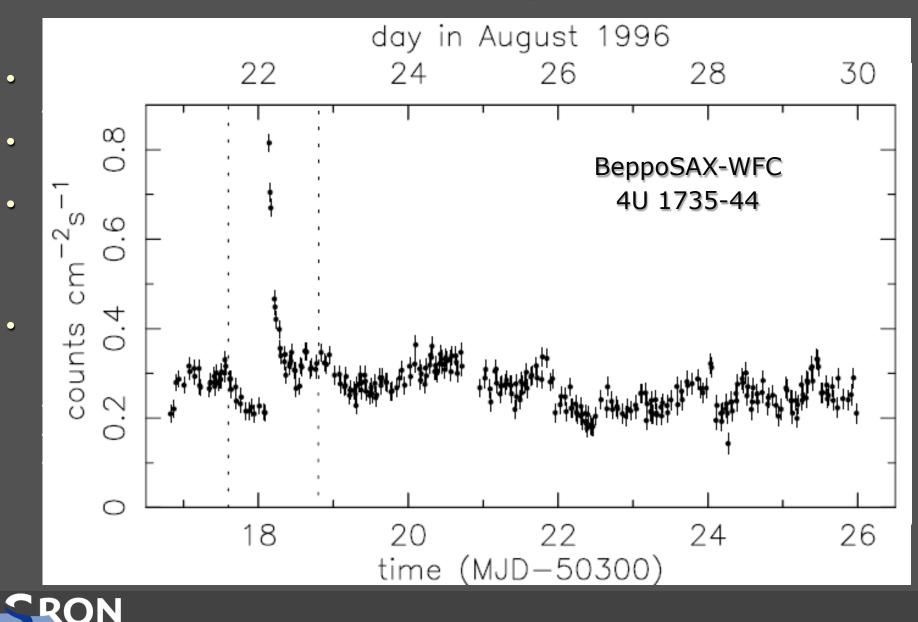
Understanding superbursts

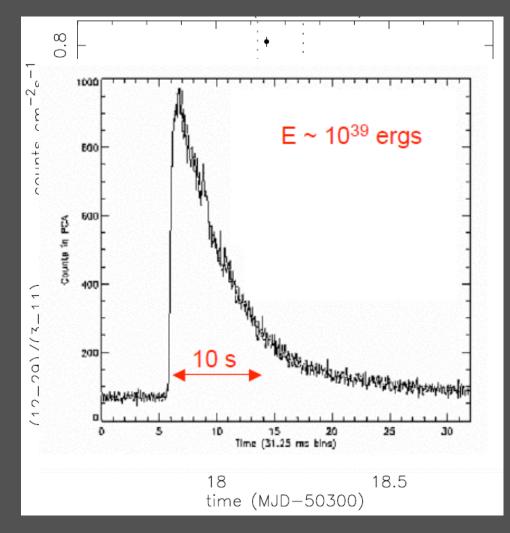
20 years after discovery


Jean in 't Zand (SRON Netherlands Institute for Space Research)

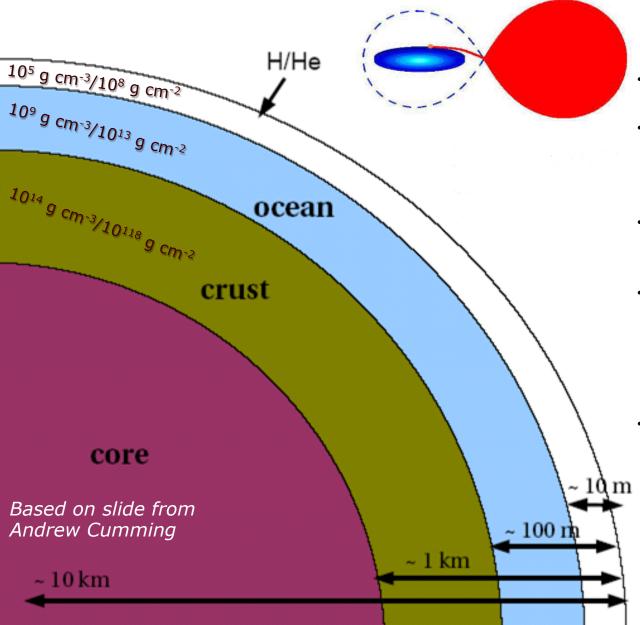
Talk outline

- What is there to understand?
 - Observations
- What do we understand.. and what not?
 - Theory
- How can we understand more?
 - Future observations, instrumentation.

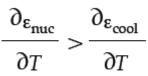
Discovery


Discovery

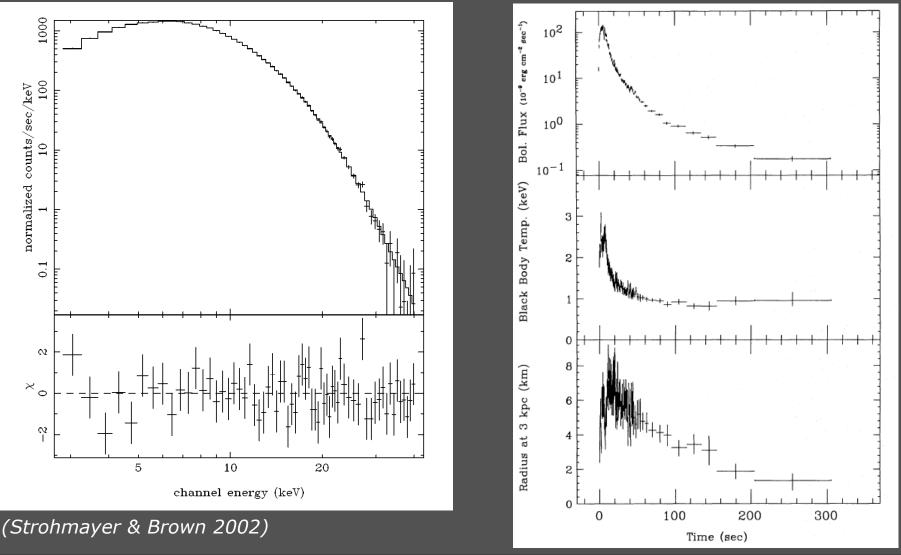
- Fast rise, exponential decay
- Cooling in tail
- Black body spectrum
- Source type-I burster


⇒

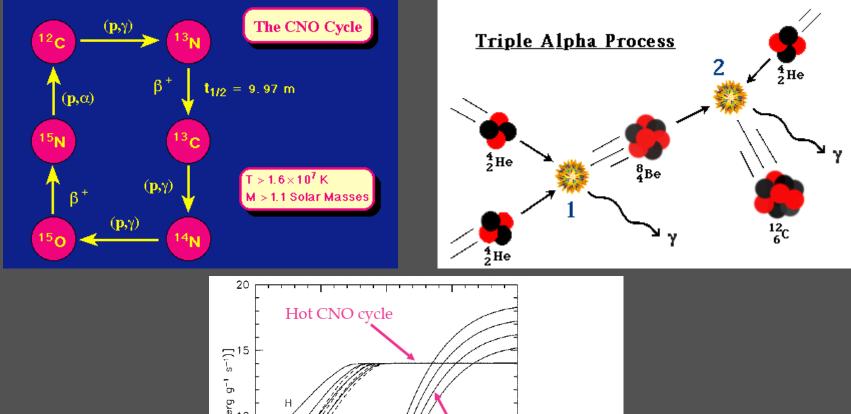
 This looks like an exceptional type-I X-ray burst, 10³ as long and 10³ as energetic (see, e.g., poster Sakamoto P-10)

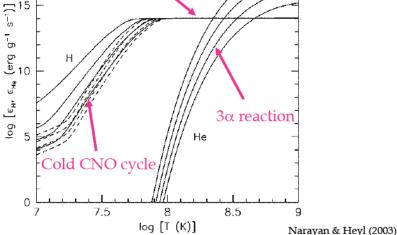

(Cornelisse et al. 2000)

Structure of an Accreting Neutron Star


- Local accretion rate in low-B NSs 10 to 10⁵ g s⁻¹ cm⁻²
- After hours to days, accumulate columns of y=10⁸ gr cm⁻² (cf, 10³ for earth atmosphere)
- Pressure (y*g) builds up to ignition condition for runaway triple-alpha
- Can result in thermonuclear shell flash if

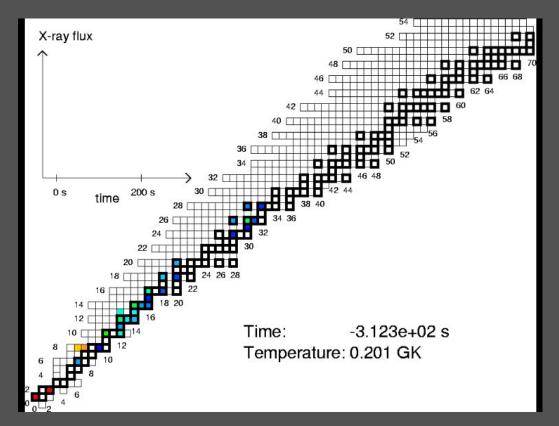
Layer heats up to 10^9 K and then cools radiatively through 10^7 K photosphere \rightarrow

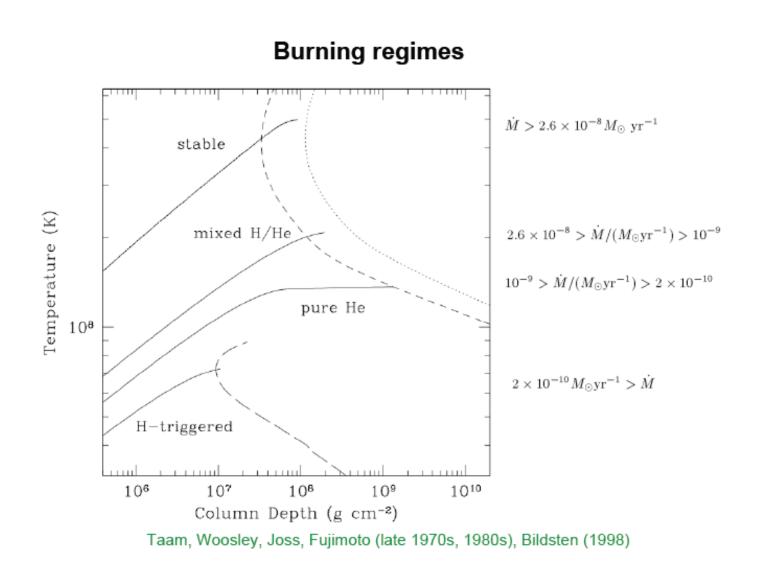

X-ray burst


Cooling black body spectrum

(Penninx et al. 1988)

Nuclear reactions: CNO cycle (H-burning) and 3-alpha (He burning)




Nuclear reactions: the rp-process

- Series of (p, γ), (α,p) and beta+ decay reactions
- May extend up to mass number 100 (SnTe)
- Slow process because of beta decays
- Only active at the highest T, when waiting points are avoided through breakouts
- Slow process, may prolong burning by ~100 s
- Produces a lot of p-rich isotopes
- May explain abundances of p-rich isotopes of Mo and Ru

(Schatz et al. 1999)

(Courtesy Andrew Cumming)

What makes superbursts 10³x as long?

- Cooling rate is similar for all equal-sized neutron stars (Stefan-Boltzmann for thermal radiation)
- Longer cooling time \rightarrow more mass to cool off
- \rightarrow deeper ignition

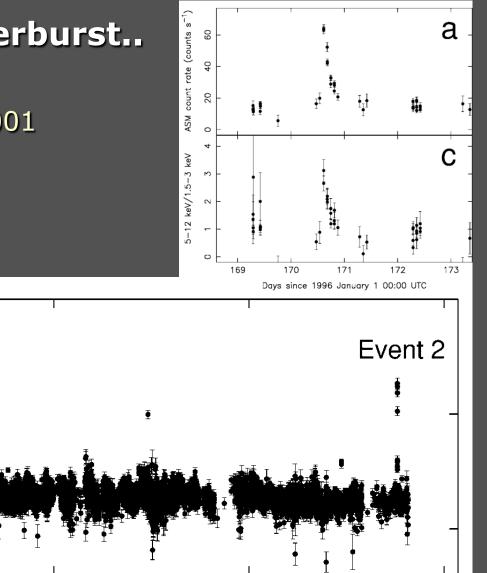
Second.. and third superburst.. from same source

500

• In June 1996 and February 2001

• 4U 1636-536 (Wijnands 2001)

Event 1


8

50

0

0

ASM count rate (counts s⁻¹)

1000

1500

2000

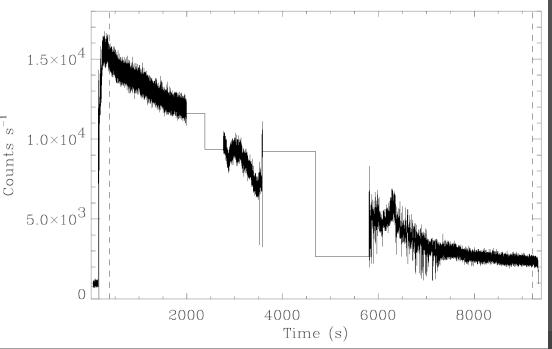
Superburst detected with much sensitive instrument

THE ASTROPHYSICAL JOURNAL, 566:1045-1059, 2002 February 20 © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A REMARKABLE 3 HOUR THERMONUCLEAR BURST FROM 4U 1820-30

TOD E. STROHMAYER

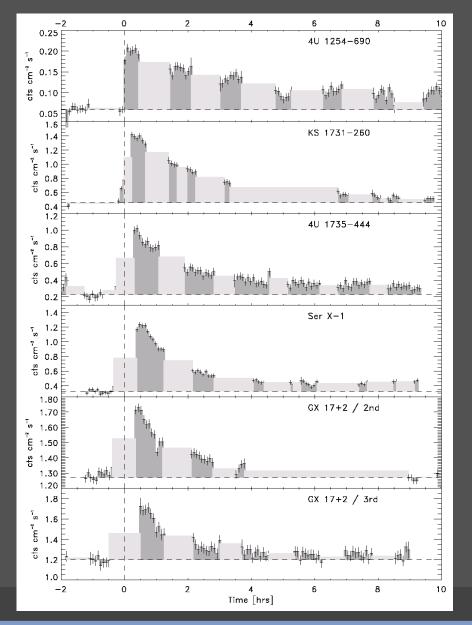
NASA Goddard Space Flight Center, Laboratory for High Energy Astrophysics, Code 680, Greenbelt, MD 20771; stroh@clarence.gsfc.nasa.gov

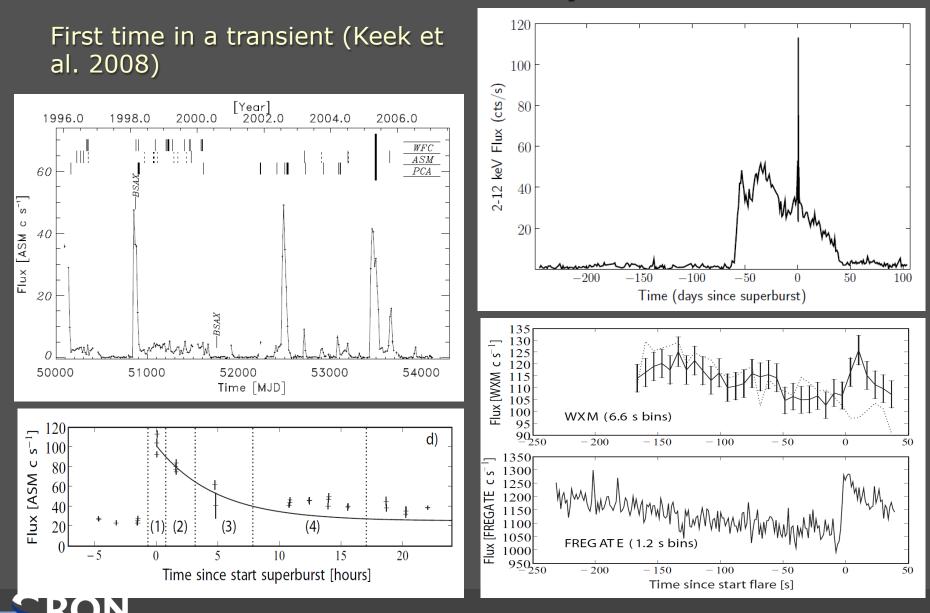

AND

EDWARD F. BROWN

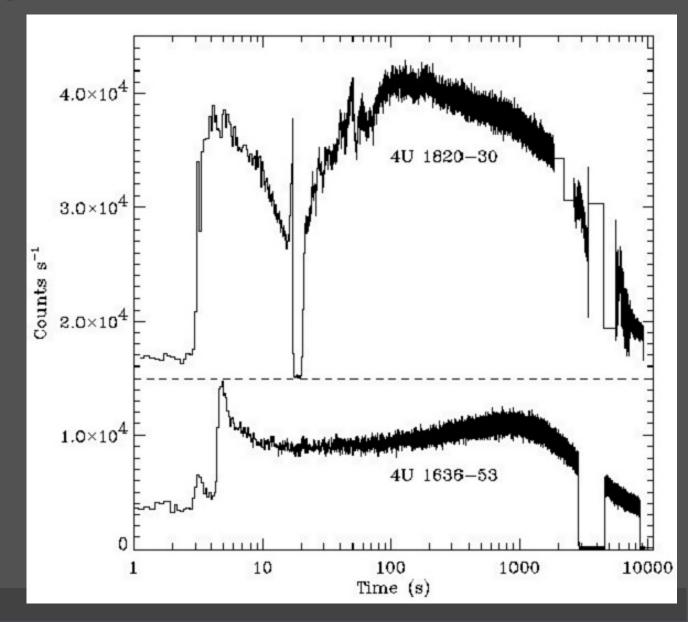
University of Chicago, Enrico Fermi Institute, 5640 South Ellis Avenue, Chicago, IL 60637; brown@flash.uchicago.edu Received 2001 August 20; accepted 2001 October 25

ABSTRACT


We present a detailed observational and the "superburst") observed by the Rossi X-Ray Timi 4U 1820-30. This is the longest X-ray burst evolongest ever observed in great detail from any sot origin. Its peak luminosity of $\sim 3.4 \times 10^{38}$ ergs s neutron star at ~ 7 kpc as well as the peak lumin same source. The superburst begins in the decayi clear burst. These shorter, more frequent bursts level of the accretion-driven flux as well as the indicate that helium could not be the energy sour

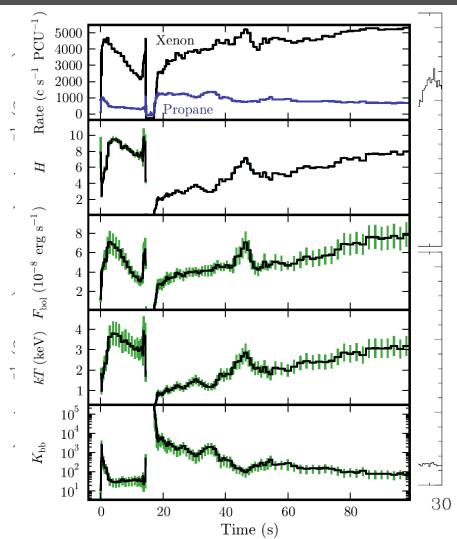

Suddenly, they are everywhere..

- WFC superburst from Ser X-1 (Cornelisse et al. 2002)
- 1st superburst in ASM data: GX 3+1 (Kuulkers et al. 2002)
- WFC superburst from KS 1731-260 (Kuulkers et al. 2002)
- PCA burst from 4U 1636-536 (Strohmayer & Markwardt 2002)
- WFC superburst from 4U 1254-69 (in 't Zand et al. 2003)
- WFC superbursts from GX 17+2 (in 't Zand et al. 2004)
- 6 additional ASM superbursts: 2 from Ser X-1, 2 from 4U 1636-536, 1 from 4U 0614+09, 1 from 4U 1608-52

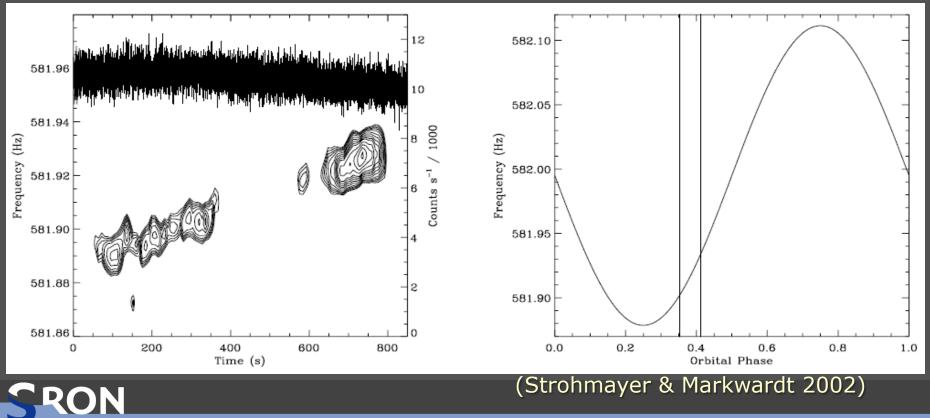


4U 1608-52: odd superburst

Superbursts with RXTE-PCA


- 10² times more effective area
- High diagnostic power, in time and spectral domain
- Coverage of onset

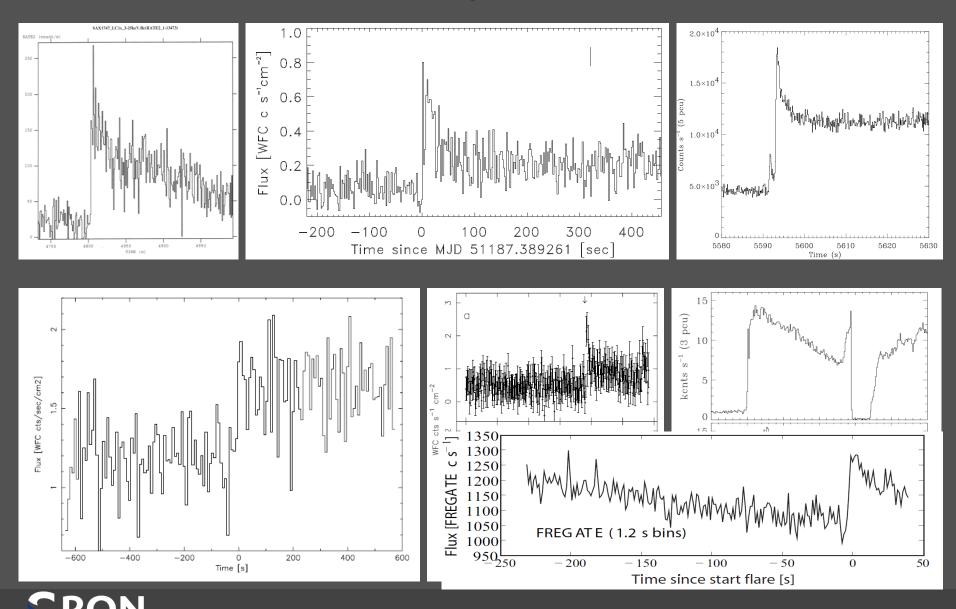
Superbursts with RXTE-PCA Precursors in 4U 1820-30


- Two precursors → never seen before
- Weinberg et al. 2006:
 - 1st: shock breakout
 - 2nd: premature Helium flash due to same shock
- Keek et al. 2012:
 - 1st: shock breakout, fallback and premature helium flash.
 - 2nd: onset of superburst

Superbursts with RXTE-PCA Burst oscillation in 4U 1636-536

- Extra long (~800 s)
- Frequency Doppler-shifted by binary orbit
- Amplitude ~10x smaller than in ordinary bursts
- Allows for constraint on donor mass (0.4-1.0 Msun)

Superburst population


See also next talk by Motoko Serino and poster P-19 by Wataru Iwakiri

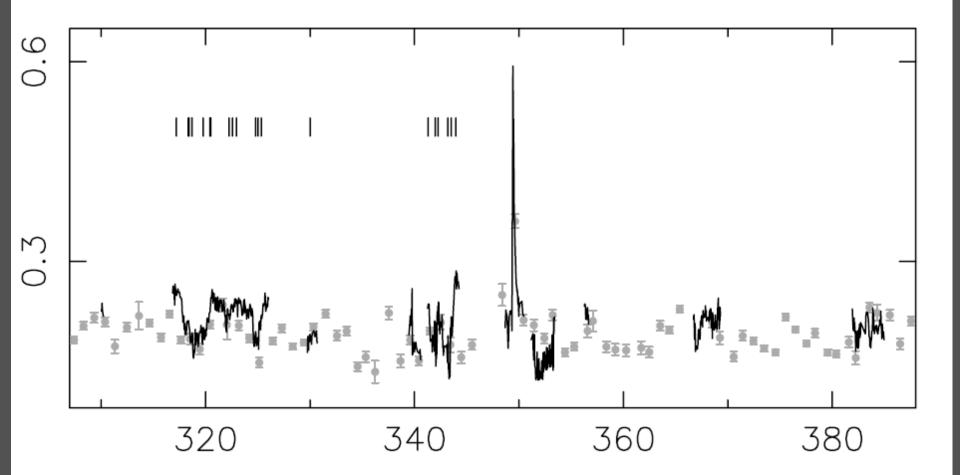
Object	Instr./year	# S B	On- Set?	Exp. Decay (hr)	L↓pk (10 ³⁸ erg/s)	Reference SB discovery
4U 0614+091	ASM'05, MAXI'14	2		>1.5	>0.1	Kuulkers05, Serino14
4U 1254-69	WFC'99	1	1	6.0	0.4	Zand03
4U 1608-522	ASM+HETE'05	1	1	4.5	0.5	Remillard05, Keek08
4U 1636-536	ASM '96/'97/'98, PCA'01	4	1	1.5-3.1	1.3	Stroh02, Wij03, Kuu09
4U 1705-44	MAXI '16	1		2		Iwakiri poster
KS 1731-260	WFC'97	1	1	2.7	1.4	Kuulkers02
4U 1735-444	WFC'96	1		1.4	1.5	Cornelisse00
GX 3+1	ASM'99	1		1.6	0.8	Kuulkers02
GX 17+2	WFC'96/'01	4	2	0.7-1.9	1.8	Zand04
EXO 1745-248	MAXI+BAT'11**	1		10	0.7	Mihara11
SAX J1747-2843	JEM-X+MAXI' 11	1	1	~?	3	Chenevez11
4U 1820-303	PCA'99,MAXI+ASM'10*	2	1	~1	3.4	Stroh02,Zand11
Ser X-1	WFC'97, ASM'99/'08, MAXI'11	4		1.2	1.6	Cornelisse02, Kuu09, Iwakiri poster
SAX J1828-1037	MAXI'11**	1		2.3	0.7	Asada11
Aql X-1	MAXI'13	1		4.3	1.0	Serino16

*questioned by Serino et al. 2016

**questioned here

8 onsets, 7 shown

7 years MAXI - Understanding superbursts 19

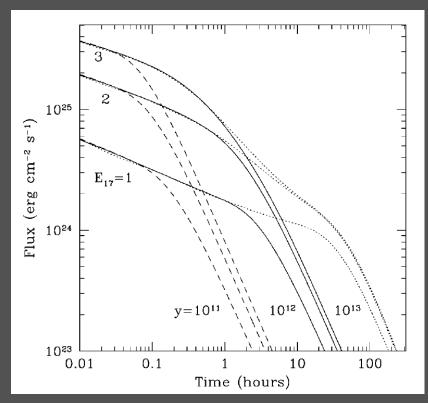

Superburst population / host binaries

Object	Instr./year	P _{orb} (min)	M /M ↓edd	Transie nt?	Normal burster as well?
4U 0614+091	ASM'05, MAXI'14	50?	0.01		Y
4U 1254-69	WFC'99	236	0.13		Y
4U 1608-522	ASM+HETE'05		0.03	У	Y
4U 1636-536	ASM '96/'97/'98, PCA'01	228	0.1		Y
4U 1705-44	MAXI '16				Y
KS 1731-260	WFC'97		0.1	(ong)	Y
4U 1735-444	WFC'96	279	0.25		Y
GX 3+1	ASM'99		0.2		Y
GX 17+2	WFC'96/'01	10d?	0.8		Y
EXO 1745-248	MAXI+BAT'11**		<0.01	у	Y
SAX J1747-2843	JEM-X+MAXI' 11		0.15	у	Y
4U 1820-303	PCA'99,MAXI +ASM'10 [*]	11	0.1		Y
Ser X-1	WFC'97, ASM'99/'08, MAXI'11		0.2		Y
SAX J1828-1037	MAXI'11**		<0.01	y?	Y
Aql X-1	MAXI'13	1137	0.1	У	У

**questioned here

Quenching of normal bursts after superbursts

(Kuulkers et al. 2004)


Superburst population / inferred depth and energy

Object	Instr./year	Nearest burst before and after (d)
4U 0614+091	ASM'05, MAXI'14	-367/+35
4U 1254-69	WFC'99	-51/+125
4U 1608-522	ASM+HETE'05	-57/+104
4U 1636-536	ASM '96/'97/'98, PCA'01	-2/+23
4U 1705-44	MAXI '16	
KS 1731-260	WFC'97	-6/+34
4U 1735-444	WFC'96	/+374
GX 3+1	ASM'99	-62/+94
GX 17+2	WFC'96/'01	
EXO 1745-248	MAXI+BAT'11	
SAX J1747-2843	JEM-X+MAXI' 11	-711/+25
4U 1820-303	PCA'99,MAXI+ASM'10*	-168/+167
Ser X-1	WFC'97, ASM'99/'08, MAXI'11	-162/+34
SAX J1828-1037	MAXI'11	
Aql X-1	MAXI'13	

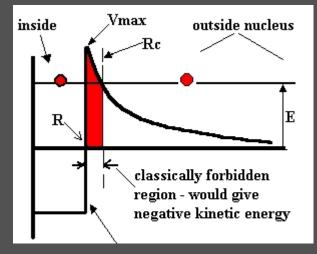
Diagnostics from light curve

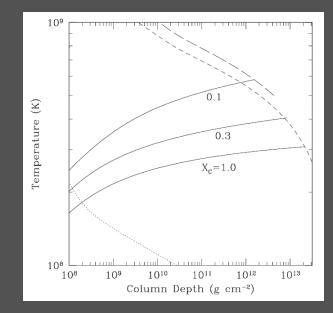
- Cooling time measure for ignition depth
- Peak flux set by amount of energy released per gram
- Mass ignited determined by m-dot and recurrence time
- Quenching → probe of stable helium burning

(Cumming & Macbeth 2004)

Superburst population / inferred depth and energy

Object	Instr./year	Y (10 ¹² g cm ⁻²)	E (10 ¹⁷ erg g ⁻¹)
4U 0614+091	ASM'05, MAXI'14	0.2	5
4U 1254-69	WFC'99	2.7	1.5
4U 1608-522	ASM+HETE'05	3.0	1.5
4U 1636-536 ASM '96/'97/'98, PCA'01		0.5	2.6
4U 1705-44	MAXI '16		
KS 1731-260	WFC'97	1.0	1.9
4U 1735-444	WFC'96	1.3	2.6
GX 3+1	ASM'99		
GX 17+2	WFC'96/'01	0.6	1.8
EXO 1745-248	MAXI+BAT'11	1.0	2.5
SAX J1747-2843	JEM-X+MAXI' 11		
4U 1820-303	PCA'99,MAXI+ASM'10 [*]	1	10
Ser X-1	WFC'97, ASM'99/'08, MAXI'11	0.6	2.3
SAX J1828-1037	MAXI'11		
Aql X-1	MAXI'13		


Summary superburst detections 1996-2016


- 26 superbursts from 15 sources
 - 8 with WFC in 6 years
 - 9 with ASM in 16 years
 - 8 with MAXI (Serino+16, Iwakiri) in 7 seven years
 - 2 with PCA (1 double with ASM)
 - 1 with JEM-X (double with MAXI)
 - 1 with HETE-II (double with ASM) (there must be many more..?)
 - 1 with Swift-BAT (double with MAXI)
- All 15 superbursters are known normal bursters (=14% of population), but normal bursts are quenched
- Onset observed for 7 superbursts, none with low-duty cycle ASMs
- Transient and persistent sources, ultracompact and non-ultracompact binaries
- All mass accretion rates (<1-100% Eddington)
- 5 sources with multiple superbursts \rightarrow recurrence of order 1 yr
- Ignition depths 0.2-3.0 x 10^{12} g cm⁻².
- Energy release $1.5-10.10^{18}$ erg g⁻¹.

What fuel is burning?

- Deeper ignition → higher density/T → circumstances where heavier elements (with higher coulomb barriers) can fuse
- Ordinary bursts burn helium and hydrogen, what's next?
- H burns to He (in CNO cycle)
- He burns to C (in 3α process)
- \rightarrow C burning

But, problem 1: how to obtain enough C?

- Plenty C produced in 3α , at least in non-transients, but it can be destroyed through proton and alpha captures, ${}^{12}C(p,\gamma){}^{13}N$ and ${}^{12}C(\alpha,\gamma){}^{16}O$
- These reactions are instigated at high temperatures (Coulomb barrier!) during bursts
- Solution: prevent normal bursts for some fraction of the time, run 3α in stable mode with smaller reactions rates at lower temperatures and let C sink out of the accretion layer
- Let normal bursts ignite elsewhere than in C-rich layer → make sure there is no H or He present

Problem 1 Nature seems to agree with this

Table 2. Average burst properties of all superbursters (above the dividing line) and six non-superbursters, as observed with BeppoSAX-WFC.

Object name	$T_{\rm C}^{\rm (a)}$	$\alpha^{(\mathrm{b})}$	$\alpha^{(c)}$	$\tau^{(d)}$ [sec]
4U 1254-690	4.6	4800		6 ± 2 (15)
4U 1636-536	0.6	440	$44 - 336^{[1]}$	6.2 ± 0.1 (67)
KS 1731-260 ^(e)	0.8	780	$30-690^{[2]}$	5.6 ± 0.2 (37)
4U 1735-444	2.4	4400	$220-7728^{[3]}$	$3.2 \pm 0.3 (34)$
GX 3+1	1.2	2100	1700-	
			$21000^{[4]}$	4.6 ± 0.1 (61)
4U 1820-303	1.5	2200		4.5 ± 0.2 (47)
Ser X-1	2.9	5800		5.7 ± 0.9 (7)
EXO 0748-676	1.0	140	$18-34^{[5]}$	$12.8 \pm 0.4 (155)$
4U 1702-429	0.3	58		$7.7 \pm 0.2 (107)$
4U 1705-44	1.1	1600	$55-1455^{[6]}$	8.7 ± 0.4 (74)
GX 354–0	0.2	97	105-140 ^[7]	$4.7 \pm 0.1 (417)$
A 1742-294	0.4	130		$16.8 \pm 1.0 \ (141)$
GS 1826-24	0.2	32	41 ^[8]	$30.8 \pm 1.5 \ (248)$

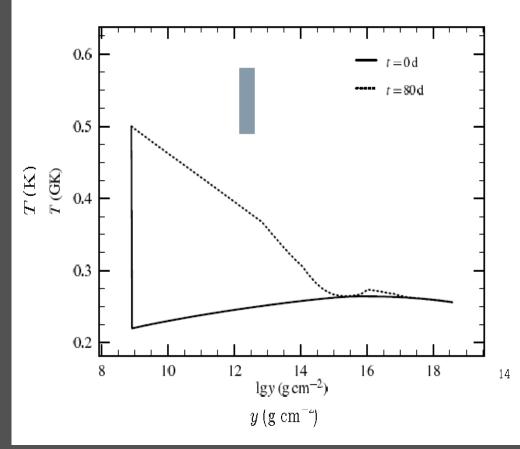
gravitational energy release

 $\frac{GM}{R} \approx 200 \text{ MeV}$ per nucleon nuclear energy release

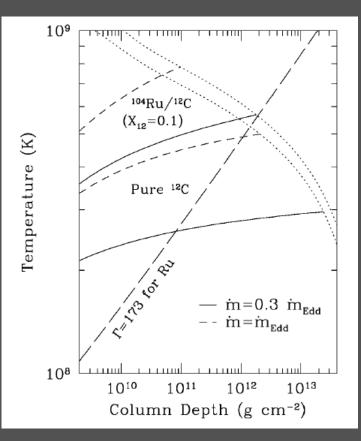
 $Q_{\rm nuc} \approx (1-5)$ MeV per nucleon

$$\alpha \equiv \frac{\int F_p \, dt}{\int F_b \, dt} \approx \frac{GM/R}{Q_{\text{nuc}}}$$
$$\approx (40 - 100)$$

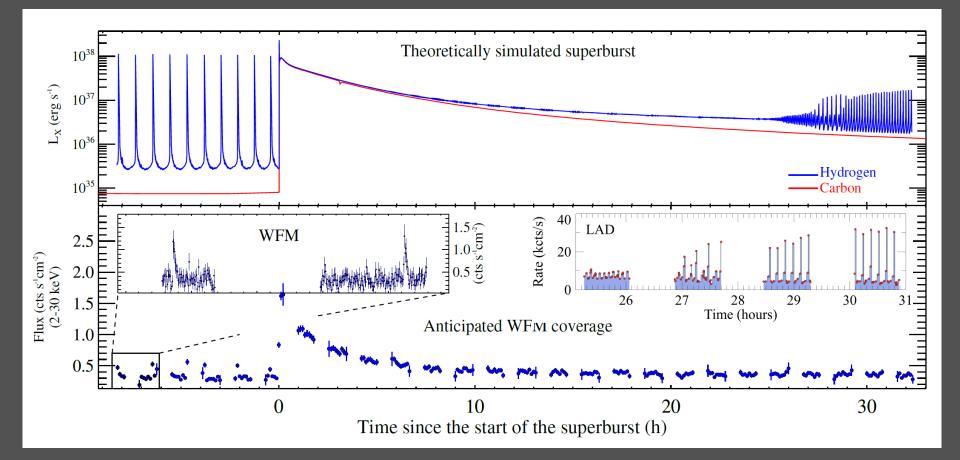
(in 't Zand+ 2003)


Problem 1 how to accomplish stable burning?

- Stevens et al. 2014: let rp process eat up the protons that cannot capture on carbon anymore → let rp process run faster than 3a process
 - Many uncertainties in reaction cross sections
- Keek & Heger 2016: new regime of stable hydrogen burning increasing 3α rate without going runaway
 - In layer where H is exhausted by hot CNO cycle


Problem 2: how to ignite the Carbon?

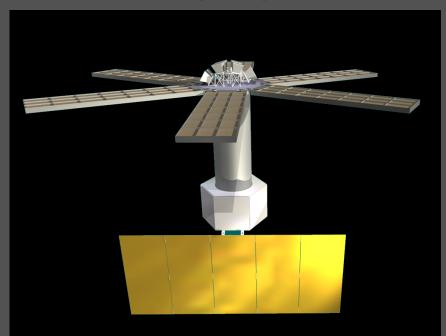
- As the ignition curve shows, one needs T>6.10⁸
 K for ignition at this depth
- That is a problem. Crustal heating by electron capture and pycnonuclear reactions (prop. To M-dot) provides insufficient heating (most goes inward instead of outward). 0.1 MeV/nucleon
- Problem aggravated by superbursts in transients


Problem 2

- Problem initially solved by decreasing layer conductivity (Cumming & Bildsten 2001) or increasing ignition depth while releasing much energy non-radiatively (Strohmayer and Brown 2002)
- Problem worsened after superburst were being detected from transient accretors (Keek et al. 2008, Mihara/Serino/ Altamirano et al. 2012, Chenevez et al. 2008, Serino et al. 2016)
- Aggravated by new strong neutrino cooling calculations in crust (efficient URCA cooling; Schatz et al. 2014) and in deep ocean (Deibel et al. 2016)
- Issue unresolved, need independent temperature measurements of crust or ttink of shallow heating process

The aftermath from stable to unstable burning

• LOFT, eXTP or Strobe-X



The future

- <u>Theory</u>: simulate nuclear burning even more extensively, updating with new cross sections and neutrino processes. Search for shallow heating process
- <u>Observations</u>: Fill lack of superburst onsets → probe of shocks that depend on ignition depth
- Fill lack of superburst aftermath \rightarrow
 - burst quenching measurements, extra probe of ignition depth and energy release
 - Detailed study of transition from stable to unstable burning of helium
- Probe crustal heating through transient superbursters in quiescence (already possible with for instance Aql X-1)
- Detect burst oscillations at far smaller amplitudes → measure more neutron star spins and constrain binary parameters
- Search for narrow spectral features (lines, edges) at better \frown sensitivity than in ordinary X-ray bursts \rightarrow constrain EOS

The answer for most needs lies with..

- The need for a wide/all-sky monitor with high duty cycle and moderate sensitivity to detect X-ray bursts
- The need for a high-sensitivity instrument to make detailed measurements of timing and spectrum
- \rightarrow LOFT, eXTP or Strobe-X (see poster P-47 by Santangelo)

 Untill then MAXI (+NICER?), Astrosat-ASM and possibly are most important data providers on superbursters

Conclusions

- Superbursts are carbon shell flashes typically 10³ as deep, energetic and rare as ordinary type-I bursts
- Our understanding stops with the carbon preservation during type-I bursting and the ignition conditions
- Future progress should focus on following the superburst decay more sensitively and longer

Thank you