MAXI detections of Superbursts

M. Serino RIKEN 2016.12.6

based on "MAXI observations of long X-ray bursts"
Serino et al. (2016) PASJ in press
co-authors
W. Iwakiri, T. Tamagawa, T. Sakamoto, S. Nakahira,
M. Matsuoka, K. Yamaoka, and H. Negoro

MAXI observations of XRBs

Advantage

- MAXI monitors the persistent fluxes of X-ray bursters
 unique capability to study correlations between the persistent fluxes and burst properties
- High efficiency for long (>92 min) lasting bursts

Disadvantage

- FoV is only 2% of the sky
 a typical scan transit lasts ~50s
- MAXI detected more than 300 "normal" X-ray bursts and 12 "long" X-ray bursts ⇒ rare events!

Superbursts and Intermediate duration bursts

sample selection: "long" X-ray bursts

- bursts from known X-ray bursters
- bright in two or more consecutive scans

Example : EXO 1745-248

2016/12/06

counts/s/

7Y of MAXI@RIKEN

calculating burst parameters

- 1. fit the spectra of each burst
 - common persistent model (powerlaw)
 - burst component (blackbody)
- 2. fit the time sequence of bolometric flux with exponential function

e-folding decay time (τ) maximum peak flux

blackbody temperature

bolometric flux

3. average persistent flux over 10 days before and after the burst

persistent flux (ratio to the Eddington limit)

each scan

spectral fit

data and folded model

calculating burst parameters

- 1. fit the spectra of each burst
 - common persistent model (powerlaw)
 - burst component (blackbody)

bolometric flux each scan blackbody temperature

2. fit the time sequence of bolometric flux with exponential function

e-folding decay time (τ) maximum peak flux

3. average persistent flux over 10 days before and after the burst

persistent flux (ratio to the Eddington limit)

calculating burst parameters

- 1. fit the spectra of each burst
 - common persistent model (powerlaw)
 - burst component (blackbody)

bolometric flux each scan blackbody temperature

2. fit the time sequence of bolometric flux with exponential function

e-folding decay time (τ) maximum peak flux

3. average persistent flux over 10 days before and after the burst

persistent flux (ratio to the Eddington limit)

Obs. Summary

Ob	ject transients are Red	peak flux (10 ⁻⁸ erg cm ⁻² s ⁻¹)	e-folding time ▼ (hour)	Energy (10 ⁴¹ erg)	
47.7			5.0		
40 0614+091		3.3 - 4.0	5.2	6.7	
Aql X-1		2.0 - 2.6	4.3	9.3	
SAX J1747.0-2853		1.5 - 1.9	4.2	22	
EXO 1745-248		1.2 - 1.5	4.2	6.6/10	Superburst
Ser X-1		0.7 - 1.3	2.7	5.1	
SA	X J1828.5-1037	0.9 - 1.7	2.3	3.4	
4U 1705-44		1.9 - 2.7	2.3	-	
SL	X 1735-269	4.4 - 32	0.77	7.8	
4U	1850-086 (2)	2.0 - 2.6	0.71	11	
IG	R J17062-6143	5.8 - 110	0.53	3.3	Intermediate
4U	1820-30	5.3 - 110	0.5	7.1	
4U	1850-086 (1)	10.7	0.27	5.9	

new

7Y of MAXI@RIKEN

peak flux and e-folding time

cooling model

- Using a model by Cumming et al. 2004
- Reasonable column depth and energy release parameters are obtained
- The burst start and peak time are unknown

 major cause of the systematic error

Study of persistent flux

- Persistent fluxes before and after the superbursts are studied with MAXI archive
- Averaged over 10 days before and after the bursts

when the superbursts ignited?

Summary

- 12 long bursts from 11 sources in seven years
 7 of them are superbursts
 - P-19 shows the details of the superburst from Ser X-1 and 4U 1705-440 (on Oct 22 this year)
- Possible anti-correlation between e-folding time and peak luminosity
 constant energy
- Superbursts can occur when the persistent fluxes are very low (< 1% of Eddington)
 - The persistent fluxes at intermediate duration bursts are low, but 4U 1820-30

ISS and MAXI

• Operate within ±40deg

GSC all-sky map

Observations by MAXI

- MAXI is on ISS
- Two field of views narrow in the scan direction and wide in the perpendicular direction
- A source is observed only ~40s in 92 min orbit
- X-ray bursts in 10kpc are observable
- High efficiency for long events such as superbursts
- Persistent emissions are monitored

observation in a scan

