HXMT: the Hard X-ray Modulation Telescope mission eXTP: the enhanced X-ray Timing and Polarimetry mission

> Shuang-Nan Zhang (张双南) zhangsn@ihep.ac.cn

Institute of High Energy Physics National Astronomical Observatories of China Chinese Academy of Sciences

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

Hard X-ray Modulation Telescope (HXMT) satellite

- China's 1st X-ray astronomy satellite
- Selected in 2011
- Total weight ~2500 kg
- Cir. Orbit 550 km, incl. 43°
- Pointed, scanning and GRB modes
- Designed lifetime 4 yrs
- Launch in June 2017

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

HXMT core sciences

- Galactic plan scan and monitor survey: finding more weak short transients at hard X-rays
- Pointed observations: high statistics observations of bright sources and high cadence XRB outbursts
- 3. GRB observations: up to 3 MeV with large area
- 4. Multi-wavelength observations

HXMT Payloads

Medium (ME): Si-PIN,5-30 keV, 952 cm²

High Energy (HE): Normal Mode Nal, 20-250 keV, ~5000 cm²

Csl, 50-700 keV, ~5000 cm²

High Energy (HE): GRB Mode

Nal, 100-300 keV, 5000 cm²

Csl, 250-3000 keV, 5000 cm²

High Energy X-ray Telescope (HE)

HXMT/HE Components assembly

- 18 main collimated phoswich detectors
- 18 calibration detectors (automatic gain control)
- 18 charged-particle anticoincidence plates (6 top +12 lateral sides)
- 3 particle monitors

Medium Energy X-ray Telescope (ME)

ME uses 1728 Si-PIN detectors read out by 54 ASIC (application specified integrated circuit). The energy coverage of ME is 5-30 keV, and the total detection area is 952 cm². The in-orbit working temperature of ME is -40 to -20 °C

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

6/26

Pixel 32

Low Energy X-ray Telescope (LE)

LE consists of 3 detector boxes, and each boxes contains 32 SCD 236 chips, which have a time resolution of 1ms and energy resolution of <140 eV (@6 keV). The total detection area is 384 cm². The in-orbit working temperature is between -80 to 40° C

Main characteristics of the HXMT Mission

Detectors	LE: SCD, 384 cm ² ;ME : Si-PIN, 952 cm ² HE : Nal/CsI, 5000 cm ²
Energy Range	LE: 1-15 keV;ME: 5-30 keV;HE: 20-250 keV GRB mode: 200-3000 keV
Time Resolution	HE: 25µs; ME: 20µs;LE: 1ms
Energy Resolution	LE: 2.5% @ 6 keV ME: 8% @ 17.8 keV HE: 19% @ 60 keV
Field of View of one module	LE: 6°×1.5°; 6°×4°; 60°×3°; blind; ME: 4°×1°; 4°×4°; blind; HE: 5.7°×1.1°; 5.7°×5.7°; blind
Source Location	<1' (20σ source)

HXMT Sensitivity: pointed observation

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

Two modes of HXMT/HE

Effective areaFront incidentBack incident

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

HXMT's GRB capability comparison

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

Expected HXMT GRB detection rates

Significance (sigma)	GRB mode		Normal mode	
	(GRBs/year)		(GRBs/year)	
	Front	Back	Front	Back
5	70	130	85	145
10	40	110	50	135
20	20	80	25	115

About 200 GRBs per year > 5 sigma

Some milestones

The mechanical model of the satellite in dynamical environment tests (2012.11)

Measuring the weight center and rotation inertia of the telescope (2012.11)

The Mechanical Model of the satellite was finished in 2012. The payloads and platform both passed the dynamical environment tests.

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

Some milestones

Tests of the electric performance of the payloads were finished in Dec. 2012, and those of the whole satellite were finished in early March of 2013.

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

Some milestones

Vacuum thermal balance tests of the satellite were carried out in Dec, 2012. The quasi-qualification models of all the detectors joined the tests. Those of HE and LE worked well during the tests, but that of ME had some problems with the FPGA, which were fixed and tested later.

All space qualification models and environmental tests were finished in 2013 and 2014.

my of Sciences

Ground calibration facilities

Finished in May 2014. The energy coverage of the monochromatic beam is 15~150 keV

Finished in the end of 2014. The energy coverage of the monochromatic beam is 0.8-30 keV.

18/26

1st yr observation program: July, 2017

Right Ascension

19/26

From HXMT AO-1: Regular; ToO; scanning

The Milky Way is highly variable in X-ray eyes!

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

enhanced X-ray Timing and Polarimetry (eXTP) mission

"HXMT:

Singularity? Neutron or Quark Star? Extreme gravity magnetism density

Thang, Institute or right Energy, Chinese Academy of Sciences

enhanced XTP (eXTP=XTP+LOFT)<2025

13 XTP telescopes (~ 1 m²)+ 4 LOFT LAD (~ 3 m²) + 3 LOFT WFM

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences

"HXMT: the Hai

Effective Area

Summary and outlook

OHXMT is China's 1st X-ray astronomy satellite.
OAll HXMT instruments built, calibrated and integrated to the satellite → launch in June 2017!
OHXMT AO-1 made in June 2016 and proposals due in Aug. 2016 → 1st yr observation program available.

⊙1/3 total time in Galactic plane scan and monitoring⊙GRB mode when in Earth shadow or HE not used

(~1/2)We look forward to cooperation with MAXII \odot eXTP in development phase \rightarrow launch < 2025?

"HXMT: the Hard X-ray Modulation Telescope mission", Shuang-Nan Zhang, Institute of High Energy, Chinese Academy of Sciences