Cyclotron absorption lines in the era of Suzaku and NuSTAR

Gaurava K. Jaisawal Physical Research Laboratory, Ahmedabad, India

> <u>Collaborator</u> S. Naik (PRL, Ahmedabad)

MAXI 2016 Workshop, RIKEN

- □ Accretion powered X-ray pulsar
- **Energy spectrum**
- **Cyclotron absorption line**
- **Results**
- **Summary and Conclusions**

Accretion powered X-ray pulsar

Continuum spectrum of X-ray pulsars

- Continuum Spectrum
- Line of sight absorption
- Soft excess
- Emission lines
- Cyclotron resonance scattering features

Becker et al. 2007

Cyclotron Resonance Scattering Feature (CRSF)

- CRSFs are generally seen in 10-100 keV spectrum of X-ray pulsars.
- These are absorption like feature, which appear due to resonant scattering of X-ray photons with electrons in quantized levels.
- The energy difference between these levels depends on the strength of magnetic field and given through

Ecyc= \hbar eB/ m_ec = 11.6 B₁₂ keV

Detection of CRSF is a powerful tool to direct estimate the magnetic field of the neutron star.

List of Cyclotron Line Sources

37?

44?

100?

1

2 3

4

5

6

7

8

4U 1700-37

4U 1909+07

LMC X-4

46

?

11.6

1161?

10.2

3.4

4.4

1.41

?

604

13.5

	Source	CRSFs	Spin	Orbital
	name	energies (keV)	period (s)	period (d
1	Swift J1626.6-5156	10	15	132.9
2	XMMU J054134.7-682550	10,	61.6	80?
3	KS 1947+300	12.5	18.7	41.5
4	$4U \ 0115 + 634$	14, 24, 36	3.61	24.31
		48, 62		
5	IGR J17544-2619	17	71.49	4.9
6	4U 1907 + 09	19, 40	438	838
7	4U 1538-52	22, 47	530	3.73
8	IGR J18179-1621	22	11.8	?
9	2S 1553-542	23.5	9.28	30.6
10	Vela X-1	25, 50	283	8.96
11	V 0332+53	27, 51, 74	4.37	34.25
12	SMC X-2	27	2.37	18
13	Cep X-4	28, 45	66.2	?
14	4U 0352 + 309 (X Per)	29	837	250.3
15	IGR J16393-4643	29.3	904	4.2
16	Cen X-3	30	4.84	2.09
17	IGR J16493-4348	30	1069	6.7
18	RX J0520.5-6932	31.5	8.04	23.9
19	LS V+44 17	32	202	155?
20	MXB 0656-072	33	160	?
21	XTE J1946+274	36	15.8	169.2
22	4U 1626-67	37	7.66	0.028
23	GX 301-2	37	690	41.48
24	Her X-1	39, 73	1.24	1.7
25	MAXI J1409-619	44, 73, 128	500	?
26	1A 0535 + 262	45,100	105	110.6
27	GX 304-1	54	272	132.5
28	1A 1118-615	55, 112?	408	24
29	GRO J1008-57	76	93.5	249.5

Cyclotron features with Suzaku and NuSTAR during outbursts

Cyclotron features with Suzaku and NuSTAR during outbursts

Yamamoto et al. (2011)

Cyclotron line in 4U 1909+07

(Jaisawal, Naik, and Paul, 2013)

Poorly studied high mass X-ray binary pulsar.

- **Pulsation Period: 604 s (Levine et al. 2004)**
- **Orbital Period: 4.4 days (Levine et al. 2004)**

□ Studied Suzaku observation

 ✓ 1-70 keV spectrum of 4U 1909+07 can describe with partial covering NPEX and high energy cutoff power-law model.

✓ Model independent cyclotron → absorption like feature at 44 keV.

✓ Magnetic field of the pulsar is estimated to be 3.8x10¹² Gauss.

Pulsation period : 66 s (Koyama et al.
1991)

- Orbital period Unknown
- Companion is Be star (Roche et al. 1997)
- Cyclotron absorption feature reported
- at ~30 keV (Mihara et al. 1991).
- Asymmetric cyclotron line profile during 2014 outburst using NuSTAR (Fuerst et al. 2015).

We have studied two Suzaku and NuSTAR observations of Cep X-4 during 2014 June-July outburst.

•The 1-70 keV energy spectrum can describe with NPEX, HECut and FDCut models.

•Apart from 28 keV cyclotron line, an additional absorption like feature seen at 45 keV.

- Model independent feature.
- Close to the twice of cyclotron energy, but less i.e. 1.7+/-0.1
- Identified as first cyclotron harmonic of 28 keV fundamental line.
 - •The 45 keV absorption feature was detected at >4 sigma level.

1-70 keV energy spectrum of Cep X-4 with Suzaku

(Jaisawal and Naik, 2015)

Crab ratio of NuSTAR observations

Luminosity dependent line energy ratio

• Fundamental line energy obtained from NuSTAR is nearly constant.

• A significant variation in the first harmonic line energy.

 Luminosity dependent line energy ratio.

• It is possible that both cyclotron lines are forming at different heights in accretion column or viewed at higher angles.

Cyclotron line in SMC X-2

1-70 keV energy spectrum of SMC X-2

Spectral parameters from PHASE RESOLVED SPECTROSCOPY

Summary and Conclusions

□ With hard X-ray capabilities of Suzaku and NuSTAR, the number of cyclotron sources has been increased that helped in understanding of magnetic field and geometry around pulsars.

□ We detected cyclotron lines in 4U 1909+07 (fundamental), Cep X-4 (first harmonics), and SMC X-2 (fundamental) for the first time.

Anharmonicity in cyclotron line energies of Cep X-4, indicating line forming regions are at different height?

□ We have also performed the phase-resolved spectroscopy of cyclotron lines in order to map the magnetic field around the pulsars such as Cep X-4 and SMC X-2.

□ The cyclotron parameters were found to be variable within <20 %, indication of local distortion in the magnetic field or effect of viewing angle.

Thanks

(gaurava@prl.res.in)