

Monitoring Supergiant Fast X-ray Transient with Swift/XRT and XMM-Newton

E. Bozzo (ISDC, University of Geneva) on behalf of a large collaboration

Classical SgXBs and SFXTs

Classical Systems

"Persistent" sources:

• expected averaged X-ray luminosity:

V_∞~ 500-3000 km/s

 $\dot{M}_{\rm W}\,{}^{\sim}\,10^{\text{-}6}{}^{-}10^{\text{-}5}$ M $_{\odot}$ /yr ${}^{\sim}\,10^{19}$ - 10^{20} g/s

 $L \downarrow acc \sim GM \downarrow NS M \downarrow capt /R \downarrow NS \sim 4x10^{36} erg/s$

- Display a limited X-ray luminosity variability of ~10-100 on time scales of 100-1000 s
- Many observed and monitored also by MAXI

Supergiant Fast X-ray Transients

"Transient" sources:

- Short sporadic flares lasting few ks (sometimes clustered at periastron)
- Average X-ray luminosity much lower than that of classical systems
- Few to hundred days orbital periods
- Very little known about spin periods
- X-ray spectra strongly reminiscent of accreting NSs
- Low luminosity for most of the time, preferred location in crowded regions in Galactic Center/Plane → so far best discovered by INTEGRAL and best monitored with sensitive X-ray focusing telescopes

(Sguera+ 2005)

Classical SgXBs and SFXTs

Orbital period 8.9 days

Spin period 283 s

Average luminosity 4x10³⁶ erg/s

Luminosity variations ~20-50

Cyclotron line 25 keV \rightarrow 2.2x10¹² G (Fuerst+ 2013)

IGRJ17544-2619 (SFXT prototype)

Orbital period 4.9 days

Average luminosity: 4x10³⁴ erg/s

Luminosity dynamic range ~10⁶

Spin period unknown (71 s? 12 s?)

Cyclotron line at 17 keV \rightarrow 1.5x10¹² G (Bhalerao+ 2015)

(Suzaku/XIS; 0.5-12 keV; Rampy 2009)

Clumpy wind accretion in classical SgXBs

M \downarrow capt \propto M \downarrow w \sim 4??r2VW L \downarrow acc \sim GM \downarrow NS M \checkmark capto/R \downarrow NS $\Delta V_{w} \sim 2-3$ $\bigtriangleup \Delta L_{X} \sim 10-100$

Accretion of clump \rightarrow X-ray flare Accretion from intra-clump \rightarrow low X-ray state

Averaged $L_{\chi} \sim 4 \times 10^{36}$ erg/s Flux variations $\sim 20-50$ on time scales of 100-1000 s (see also Martinez-Nunez+ 2014)

Extreme clumpy wind accretion in SFXTs

Extremely clumpy winds and eccentric orbits

(in't Zand 2005; Negueruela 2006, 2008; Walter 2006)

UNIVERSITÉ

DE GENÈVE

But theory and observations of massive stars suggest:

 $\Delta L_{x} \sim 10-100$

(Surlan 2013)

Challenged by supergaint wind theories + discovery of short orbital period SFXTs

Luminosity distributions in clumpy wind accreting systems

Accretion from a clumpy wind produces log-normal distributions of the source X-ray luminosity (Fuerst 2010)

Clumpy wind seems to effectively be driving accretion in SgXBs....

X-ray cumulative luminosity distributions

Inhibition of accretion in SFXTs

The centrifugal/magnetic gating model (Bozzo 2008; Grebenev 2007)

Centrifugal gating \rightarrow "propeller effect" Magnetic gating \rightarrow no gravitational focusing of wind material

Requires NS with long spin periods (>1000 s) and strong magnetic fields (~10¹⁴ G) \rightarrow IGRJ17544-2619 (Bhalerao 2014)

The quasi-spherical settling accretion model (Shakura 2011,2013,2014)

Assuming low M \downarrow w (L_x<4x10³⁶ erg/s) and slowly rotating NS

Hot shell inhibits accretion:

- *1/30 x Bondi* (radiative inefficient regime)
- 1/3 x Bondi (Compton cooling regime)
- = Bondi (sporadic magnetic reconnections)

Extremely Clumpy Stellar Winds

15 h observation of IGRJ18410-0535

Estimated clump size:

$$R_{\rm cl} \simeq 8 \times 10^{11} \,\mathrm{cm}$$

 $M_{\rm cl} \simeq 1.4 \times 10^{22} {\rm g}$

60% Supergiant star radius

MAXI 2016, Wako, Japan

Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst

- E. Bozzo¹, V. Bhalerao², P. Pradhan^{3,4}, J. Tomsick⁵, P. Romano⁶, C. Ferrigno¹, S. Chaty^{7,8}, L. Oskinova⁹, A. Manousakis¹⁰, R. Walter¹, M. Falanga^{11,12}, S. Campana¹³, L. Stella¹⁴, M. Ramolla¹⁵, and R. Chini^{15,16}
- ¹ ISDC Data Centre for Astrophysics, Chemin dEcogia 16, CH-1290 Versoix, Switzerland; e-mail: enrico.bozzo@unige.ch
- ² Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India
- ³ St. Josephs College, Singamari, Darjeeling-734104, West Bengal, India
- ⁴ North Bengal University, Raja Rammohanpur, District Darjeeling-734013, West Bengal, India
- ⁵ Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450, USA
- ⁶ INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica Palermo, via U. La Malfa 153, 90146 Palermo, Italy
- ⁷ Laboratoire AIM (UMR 7158, CEA/DRF/Irfu/SAp-CNRS-Université Paris Diderot), Centre de Saclay, LOrme des Merisiers, Bât. 709, FR-91191 Gif-sur-Yvette Cedex, France
- ⁸ Institut Universitaire de France, 103, boulevard Saint-Michel, 75005 Paris, France
- ⁹ Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
- ¹⁰ Centrum Astronomiczne im. M. Kopernika, Bartycka 18, 00-716 Warszawa, Poland
- ¹¹ International Space Science Institute (ISSI), Hallerstrasse 6, CH-3012 Bern, Switzerland
- ¹² International Space Science Institute in Beijing, No. 1 Nan Er Tiao, Zhong Guan Cun, Beijing 100190, China
- ¹³ INAF Osservatorio Astronomico di Brera, via Emilio Bianchi 46, I-23807 Merate (LC), Italy.
- ¹⁴ INAF Osservatorio Astronomico di Roma, Via Frascati 33, 00044 Rome, Italy.
- ¹⁵ Ruhr-Universität Bochum, 44780 Bochum, Germany
- ¹⁶ Instituto de Astronoma, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile

Recent observations of IGR J17544-2619

Spectral variability during flares:

- Qualitatively similar to IGRJ18410-0535
- Much reduced N_H increase during rise to the 1st flare
- Drop of N_H before the peak of the 1st flare
- Different spectral variations in the two larger flares
- First fainter flare difficult to study due to low count-rate

Broad-band spectral behavior in X-rays reasonably similar to classical systems with young highly magnetized NSs Broad-band spectral analysis (XMM+NuSTAR):

- Thermal + non-thermal component with evident cutoff around 20-30 keV
- Enhanced emission 10-20 keV
- No sign of previously reported cyclotron line at 17 keV

Intriguing absorption feature at 7.2 keV only during the time interval 10

- signature of a temporary accretion disk?
 - Unlikely that IGRJ17544 is seen at high inclination (no eclipses)
- Absorption from a ionized stellar wind?
 - Why never seen before in other similar systems?

Swift coverage of the whole system orbit (4.9 days)

- Source sub-luminous in X-rays as expected
- 1 small flare about 1 day after the outburst seen by XMM and NuSTAR
- UVOT measurements compatible with previous values
- Optical and IR observations during quiescent interval
 - μ-variability as expected for supergiant stars

Conclusions: what do we understand about SFXTs

- SFXTs are largely sub-luminous compared to classical systems:
 - Inhibition of accretion required but detailed mechanism(s) still debated
- SFXTs flares/outbursts:
 - Clumps should trigger variability as in classical SgXBs and give rise to flares
 - Extremely massive clumps required to produce the brightest outbursts
 - Cannot be excluded due to evidences in X-rays
 - Not all outbursts accompanied by large NH variations: dichotomy?
 - Other mechanisms could widen the variability achieved with standard clumps
- Alternative mechanisms to produced bright outbursts proposed:
 - Short-lived accretion disks close to periastron
 - Poorly known formation and evaporation mechansisms
 - Evidence in two observations of IGRJ17544-2619
 - Others?
- Urgent need to discover more SFXTs and enlarge the sample:
 - Need a wide field of view instrument:
 - Lobster-eyes technology very good sensitivity to low luminosities: well suited but poor spectral capabilities (Einstein-Probe,...)
 - Improved sky coverage compared to INTEGRAL but still reduced sensitivity only to outburst (e.g., HMXT, eXTP WFM, ...)
 - Combine the two? (ESA/M5 THESEUS,.....)

INCOMING!

High-throughput X-ray Astronomy in the eXTP era

eXTP开启高产出X射线天文新纪元

6-8 February 2017 - Rome, Italy

http://www.isdc.unige.ch/extp