POLAR: the gamma-ray burst polarimeter onboard China's Tiang-Gong 2 Spacelab

Shuang-Nan Zhang Institute of High Energy Physics, CAS On behalf of the POLAR collaboration

Collaborations of POLAR

- Science of POLAR
- Design of POLAR detector
- Performance Study by Monte-Carlo Simulations
- Study of systematic effects
- Calibration tests and data analysis
- In-orbit calibration scheme
- Preliminary results
- Summary and Outlook

GRB Models and Polarization

POLAR

The leading models that describe the prompt emission are based on synchrotron emission from relativistic electrons in GRB jets

Summary of the current GBR polarization measurements

Essentially all with large uncertainties

GRB	Instru/Satellites	Pol degree(%)	Energy range(keV)	Comments
110721A	GAP/IKAROS	84_{-28}^{+16}	70-300	@3.3σ, with constant pol direction
110301A	GAP/IKAROS	70±22	70-300	@3.7 σ , with constant pol direction
100826A	GAP/IKAROS	27±11	70-300	@2.9 σ , with inconstant pol direction
021206	RHESSI	80 ±2 0; 41 ₋₄₄	150-2000	With large systematic error
140206A	IBIS/INTEGRAL	>48	200-400	Unable to restrict GRB model
061122	IBIS/INTEGRAL	>60; >65; >52	250-800; 250-350; 350-800	Unable to restrict GRB model
041219A	IBIS/INTEGRAL IBIS/INTEGRAL SPI/INTEGRAL	<4; 43±25; 98±33	200-800; 200-800; 100-350	With variable pol direction
960924	BATSE/CGRO	>50	20-1000	Unable to restrict GRB model
930131	BATSE/CGRO	>35	20-1000	Unable to restrict GRB model

Design of POLAR detector

Main scientific goals

- Measure the polarization of the GRB prompt emissions as well as Solar flare emissions, to confirm or restrict the radiation models
- In 2 years of flight lifetime, be able to measure ~ 100 GRBs, contributing to the largest GRB prompt emission polarization observation database
- For the GRBs with fluence higher than 10⁻⁵ erg cm⁻², the Minimum Detectable Polarization (MDP) of POLAR can reach down to < 10%

POLAR- composition and construction

Detector modular

Detection principle of POLAR

х

Klein-Nishina equation:

$$\frac{d\sigma_P}{d\Omega} = \frac{1}{2}r_0^2\varepsilon^2(\varepsilon + \varepsilon^{-1} - 2\sin^2\theta\cos^2\eta)$$

Distribution function

$$C(\xi) = A\cos(2(\xi - \varphi + \frac{\pi}{2})) + B$$

Detection principle of

國科學院為能物加加完施 Institute of High Energy Physics Chinese Academy of Sciences

Modulation curve

a standard GRB. E. S. Garcia, 2010

direction of the photons. E. S. Garcia,

2010

Shaolin Xiong Ph.D. thesis, 2010

「國科学院為能物加加完施 Institute of High Energy Physics Chinese Academy of Sciences

Monte-Carlo Simulations - Minimum detectable polarization

中國科學院為能物招研完所 Institute of High Energy Physics Chinese Academy of Sciences

Technical properties summary of POLAR

1	Detector material	Plastic scintillator (EJ-248M)
2	Yearly detectable GRBs	~50
3	GRB localization accuracy	≤5°(Fluence≥10 ⁻⁵ erg cm ⁻²)
4	Detection energy range	\sim 50 $-$ 500 keV
5	Field of view	$\pm 70^{\circ} \times \pm 70^{\circ}$ (~1/3 of the sky)
6	Modulation factor	40%@200 keV
8	MDP	\sim 10% (Fluence _{total} ≥ 3×10 ⁻⁵ erg cm ⁻²)
9	Detector geometry area	~550 cm ² (on-axis view)
10	Mass	OBOX: 27.6 kg, IBOX: 3.52 kg
11	Size	OBOX: 462×462×268.5 mm ³ IBOX: 247×160×85 mm ³
12	Maximum power consumption	≤80 W
13	Time accuracy(UTC)	±1 ms
14	Reliability	0.90 (in 2 years lifetime)

中国科学院高能物理研究所
Institute of High Energy Physics Chinese Academy of Sciences

(1) Calibration tests with radioactive source

- Instruments: OBOX FM, IBOX FMS, EGSE
- Aim: Gain-HV calibration, energy calibration
- Source: ¹³⁷Cs (662 keV Gamma-rays, ~477 keV of the Compton edge)

Tests at IHEP

(1) Calibration tests with radioactive source

Left: Compton spectra and fitting curve of channel 22 of module 631; Right: $log_{10}CE$ vs $log_{10}HV$ of channel 57 of module 631

(2) Calibration tests with low energy X-ray fluorescence

- Instruments: OBOX FM, IBOX FMS, EGSE
- Aim: Low energy calibration, E-C relation calibration
- Source: X-ray fluorescence (34.5keV, 44keV, 60keV, 80keV)

(2) Calibration tests with low energy X-ray fluorescence

Calibrated E-C relations of channel 31 of module 423, HV = -810V. Black points: data; Red curve: fitting curve. Left: fitting with only the first 4 data points; Right: fitting with the first 4 measured data points + 2 calculated data points according to the Gain-HV relations.

(2) Calibration tests with low energy X-ray fluorescence

E-C relation energy, FEE temperature and HV

Incident energy/keV	34.5	44	60	80	511	662
Energy deposition/keV	28.1	37.0	52.2	71.4	322.8	456.0
FEE average temperature/ $^{\circ}\!\!\mathbb{C}$	41.3	37.6	43.2	44	-	31.4
HV/V	init56	init56	init56	init56	init57	610 ~ 660

* The Compton edge position are used for 511 keV and 662 keV. kB = 0.143 mm/MeV

* Init56 and init57 are different detector parameter settings (here the main difference is the HV) for the tests

(3) ESRF beam test in 2015 - introduction

- Facility introduction
 - Beamline: ID11
 - Polarization: 100%
 - Pol direction: horizontal
 - Energy range: 35 ~ 140 keV
 - Beam size: minimum (H×V) 0.2×0.07 μm², maximum (H×V) 1200×1000 μm²
 - Initial intensity : ~10⁷ phs/ s

Detector positions for different off-axis tests

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Data reduction procedure

- General data analysis procedure
 - Cleaning and selecting of the data
 - Integration of the data files
 - Pedestal and common noise subtraction
 - Calculation of "barbeam" information
 - Crosstalk correction
 - Event time synchronization and merge
 - Energy calibration
 - Modulation curve filling
 - Geometric effect correction
 - Modulation factor calculation
 - Comparison with MC simulation results

. . .

(3) ESRF beam test in 2015 - modulation curve calculation results Modulation curve, 140 keV

- 140 keV, on-axis measurement
- Modulation factor
 - 0°polarization : 39.31%
 - 90° polarization : 40.23%
 - Simulated result: ~40%

In-orbit calibration scheme

Top view of POLAR: locations of 4 ²²Na sources and 25 modules

中國科學院為能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Triggering pattern of the 1600 channels

In-orbit calibration scheme

Result with event selection criteria

Triggering pattern of the 1600 channels

Current status

- POLAR was successfully launched on on15th/September
- POLAR was successfully powered on on 16th/September
- OBOX was successfully powered on on 22nd/September
- OBOX was powered off on 14th/October for docking of TG-2 and Shenzhou-11 spaceship
- OBOX was powered on again on 18th/November...

POLAI

中國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

Preliminary results: Crab pulsar

Preliminary results: solar flare

Oct. 12, 2016: consistent with RHESSI results

中國科學院為能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Preliminary results: GRB 20160928A

GBM 160928825

>90 degree off-axis, not good for polarization

中国科学	院高能	的理研究	fin
Institute o	f High I	Energy Phys	ics
Chinese	Academy	v of Sciences	

Preliminary results: GRB 20161129A

Count Rate

Summary and outlook

- POLAR, launched on 2016-09-14, is working as expected.
- POLAR has detected the Crab pulsar, solar flares and GRBs.
- In-orbit calibration is on-going: polarization for solar flares and GRBs are expected for bright events.
- POLAR data are delayed by about one day, so we can not give fast GRB alerts.
- However, upon receiving GCN notices of GRB alerts, POLAR team can report rapidly the prospect of measuring polarization of each GRB with an estimated uncertainty.

For more details, please refer to the following website or contact us. http://polar.ihep.ac.cn E-mail: zhangsn@ihep.ac.cn or Martin.Pohl@cern.ch

中國科學院為能物招研完所 Institute of High Energy Physics Chinese Academy of Sciences POLA