2016/08/31 VTX meeting Invariant yield of HFe in Run14 AuAu

Kazuya Nagashima (Hiroshima Univ./RIKEN)

✓ Invariant Yields of Heavy Flavor e

Calculation of invariant yield of HFe

 $- \frac{dN_e^{HF}}{dp_T} dp_T \text{ can be calculated by published photonic yields } (\pi^0, \eta, \gamma)$ $\frac{dN_e^{HF}}{dp_T} = \frac{dN_e^{photonic}}{dp_T} \times R_{NP}(p_T) \times (1 - F_{ke3}(p_T) - F_{J/\psi}(p_T))$

$$> \frac{dN_e^{photonic}}{dp_T} = \frac{dN_{\pi^0,\eta,\gamma}^{total}}{dp_T} \times R_{DP}(p_T) \times (1 + R_{CD})$$

$$-> R_{DP}(p_T) = \frac{N_e^{dalitz}}{N_{\pi^0,\eta,\gamma}^{total}}, \quad R_{CD} = \frac{N_e^{conv.}}{N_e^{dalitz}} \quad \text{calculated by MC method}$$

$$> R_{NP}(p_T) \text{ can be calculated by data driven}$$

$$> F_{ke3}, F_{J/\psi} \text{ are used previous analysis}$$

 $\frac{dN_e^{HF}}{dp_T} = \frac{dN_{photon}^{total}}{dp_T} \times R_{DP}(p_T) \times (1 + R_{CD}) \times R_{NP}(p_T) \times (1 - F_{ke3}(p_T) - F_{J/\psi}(p_T))$

✓ Ratio of Dalitz decay e to photonic souce

- MC simulation
 - single sim. $\times p_T$ weight
- Ratio of dalitz e to photonic souce
- $R_{DP} = N^{e}_{dalitz}/N_{\pi,\eta,\gamma}$

Invariant yield of dalitz decay e

✓ Ratio of non-photonic to photonic

Invariant yield of HF e

Invariant yield of dalitz e (using Run4 cocktail)

[Run4 cocktail]

- Conversion will be increased
 - by R_{CD} ratio (Run4/Run11)
 - > Run14 R_{CD} = 1.027
 - $> Run11 R_{CD} = 0.404$
- conversion × (1.027/0.404)

Invariant yield of HF e (useing Run4 cocktail)

Fraction of non photonic electron

Data driven method agree with bootstrap method!! Data driven method is better than Residual method (using cdphi dist.)

K.Nagashima

BG: High-multiplicity

✓ <u>High-multiplicity BG</u>

- CNTrack -> true, SVX hit -> fake

<u>Small angle rotation</u>

- reconstruct fake track
 for high-multiplicity BG at VTX
- similar method as RICH swap
- CNT track is rotated 10 degrees at VTX
 +φ, -φ, +θ, -θ, +φ.... (track by track)
- SvxCentralTrackBackList (made by Takashi)
 - > reconstructed by SvxCentralTrackBG_VarArray

Embedding study for High-mutiplicity BG

- + embedded simulation
 - require VTX hit at B0B1 (2hit)
 - embedding code has bug
 chi2ndf distribution is odd
 - > need more investigation
- + small angle rotation
 - reproduce high-multiplicity BG almost
 - but embedded sim. has asymmetry...

+ <u>To Do</u>

- modify embedding code
- apply to real data

✓ Fraction of photonic electron

K.Nagashima

2016/8/30

Photonic simulation

- 80M events for each of particles
- applied pT weight function
- applied veto cut
- calculate fraction of photonic e > almost same as that PPG182

 π^0

η

З

3.5

4

4.5

Direct γ

5

Photonic simulation

[published data] π^0 from PPG η from m_T scaling γ^{dir} from PPG

[p_T weight function]
fit mod. hagedorn
+ pow low

> apply p_T weight to mc simulation

14

✓ data/fit for π^0 (mod. hagedorn + power low)

15

data/fit for direct photon

