Recent Progress on Flavor Asymmetry of Anti-Quarks in the Proton by Drell-Yan Experiement at SeaQuest

> 第 10 回 高エネルギー QCD・核子構造 勉強会 2016/10/12

> > 中野 健一

東工大理

Outline

- 1. Purpose & technique of measurement
 - Flavor asymmetry of anti-quarks $(\bar{d}(x)/\bar{u}(x))$ in nucleon
 - Understandings of $\bar{d}(x)/\bar{u}(x)$ by measurements & theories
 - Technique to measure $\overline{d}(x)/\overline{u}(x)$ with Drell-Yan process
- 2. Setup & status of SeaQuest experiment
 - Beam, target & spectrometer
 - Data taking
- 3. Measurement of $\bar{d}(x)/\bar{u}(x)$
 - Analysis procedure
 - Preliminary result
- 4. Summary

Internal Structure of Proton (Nucleon)

• Quarks, anti-quarks & gluons

- The anti-quark distribution is flavor symmetric?
 - Strong force is independent of flavor
 - $\circ~~{
 m Splittings}~{
 m of}~g
 ightarrow uar{u}~\&~g
 ightarrow dar{d}~{
 m occur}~{
 m equally}$

Anti-Quark Flavor Asymmetry: d/\bar{u}

- CERN NMC ('90): deep inelastic muon scattering
 - $\circ~$ Gottfried Sum: $S_G=0.2281(65)<1/3$
 - $\circ~\int \bar{d}(x) dx > \int \bar{u}(x) dx$... discovery of flavor asymmetry of anti-quarks in proton
- Measurement of x dependence of $\bar{u}(x)$ & $\bar{d}(x)$: Drell-Yan process
 - $\circ~{
 m CERN}~{
 m NA51}$ ('94): $ar{d}>ar{u}~{
 m at}~x\sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Aim to Research Anti-Quark in Proton

- 1. Improve the accuracy of anti-quark PDFs
 - Proton is widely used in various research
 - $\circ~ar{q}(x)$ is an input of hadron-reaction simulations (ex: $u+ar{d}
 ightarrow W^+$)
- 2. Investigate QCD effects on the proton structure
 - All anti-quarks are dynamically created by QCD
- 3. Examine hadron models based on QCD effective theory

Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between u & d (${\sim}2$ & 5 MeV) in g
 ightarrow q ar q
 - \circ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... *PRD15*, *2590* (1977)
 - $\circ \ \operatorname{Prob}(g \to u \bar{u}) < \operatorname{Prob}(g \to d \bar{d}) \ \mathrm{since} \ p = u u d$
 - Cannot explain the measured size ... NPB149, 497 (1979)
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)

- Lattice-QCD calculation with LaMET ... PRD91, 054510 (2015)
 - As large as the measured size
 - Room to improve pion mass & lattice size

Theories of \bar{d}/\bar{u} Asymmetry (2)

- Statistical model ... NPA941, 307 (2015)
 - $\circ~$ Based on the Fermi & Bose statistics
 - Predicts $\bar{d}(x) \bar{u}(x) = \Delta \bar{u}(x) \Delta \bar{d}(x)$
- Meson cloud model ... PRD58, 092004 (1998)

$$\circ ~|p
angle = (1-a-b)|p_0
angle + a|N\pi
angle + b|\Delta\pi
angle$$

- More \overline{d} in π^+ as $|n\pi^+\rangle$ etc.
- Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
- \circ Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L = 1 of π to make $J^P = 1/2^+$ of proton, as parity of π is $J^P = 0^-$)

Comparison of Theories to Measurements

• The x dependence of $\bar{d}(x)/\bar{u}(x)$ is the key to develope/examine models

• Drop sharply at $x \sim 0.3?$ Go down to $\overline{d} < \overline{u}?$

Measurement of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Invariant mass: $M^2 = x_{beam} x_{target} s$, Rapidity: $\exp Y = \sqrt{x_{beam}} / x_{target}$ • $x_{beam} = \frac{M}{\sqrt{s}} e^{Y}$, $x_{target} = \frac{M}{\sqrt{s}} e^{-Y}$
 - Cross section at LO:

$$\frac{d^2\sigma}{dx_{be}dx_{ta}} = \frac{4\pi\alpha^2}{9x_{be}x_{ta}}\frac{1}{s}\sum_{q=u,d}e_q^{-2}\left\{q_{be}(x_{be})\bar{q}_{ta}(x_{ta}) + \bar{q}_{be}(x_{be})q_{ta}(x_{ta})\right\}$$

- Only "q_{be}(x_{be}) q̄_{ta}(x_{ta})" survives @ forward rapidity,
 i.e. quark in beam & anti-quark in target
- Ratio of cross sections with LH2 & LD2 targets

$$rac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})}pproxrac{1}{2}\left(1+rac{ar{d}(x_{ta})}{ar{u}(x_{ta})}
ight)$$

• SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ particularly at high x (0.15 $\lesssim x \lesssim 0.45$)

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - $^\circ~5~{\rm sec}$ for E906
 - 55 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec in spot size

E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

• A typical Drell-Yan event (top view) ... mass = 6 GeV, $\theta_{\mu^+} = 90^\circ$, $\phi_{\mu^+} = 0^\circ$

- Detection of dimuons
 - Station 1-3 : Tracking with drift chambers
 - Station 4 : Particle identification with drift tube
 - $^{\circ}$ Momenta of detected muons are 40 GeV/c on average

SeaQuest Hall — 2015-July-27

Recent Progress on Flavor Asymmetry of Anti-Quarks in the Proton by Drell-Yan Experiment at SeaQuest

Status of SeaQuest Data Taking

• Events

				×10 ¹⁸				
Year	Month	Event	ets	_			Þ	
2008	12	Fermilab Stage-2 approval	larg	-			Aer.	/
2011	08	End of spectrometer construction	[uo	-			Deli	
2012	03-04	1st data taking (commissioning)	82.5				\sim	
	05-	Detector & DAQ upgrade	Prot	_			/	
2013	11-	2nd data taking (10 months)	ted	-			/	
2014	11-	3rd data taking (8 months)	EL Ba	_				
2015	10-	4th data taking (10 months)	Ť.	-			1	
2016	08	First PhD thesis on $\overline{d}/\overline{u}$ (宮坂, 東工大)		_		·	مر	
2016	11-	5th data taking (plan)		-		/	3	5
Beam protons on targets			- 1.5	-	/	/	Thibite	•
$\circ~1.1 imes10^{18}$ recorded up to now							Not orde	\$
							-	

- $^\circ~0.6 imes 10^{18}$ analyzed for preliminary $ar{d}/ar{u}$
- Data taking continues in FY2017
 - $^\circ~$ Another 0.4×10^{18} to be recorded (1.5 \times 10^{18} in total)
 - Wider chamber acceptance at St. 1
 - Faster DAQ
 - Smarter trigger logic

Extraction of $\overline{d}(x)/\overline{u}(x)$ — Step 1

- Measure Drell-Yan events with two targets
 - LH2 & LD2 targets
 - $^{\circ}$ Invariant mass $> 4.2~{
 m GeV}$
- Correct Drell-Yan yields for
 - Backgrounds
 - Reconstruction efficiency (due to detector hit rates)
- Normalize with relative luminosity
- Take the ratio of normalized yields

$$rac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})}pprox rac{1}{2}\left(1+rac{ar{d}(x_{ta})}{ar{u}(x_{ta})}
ight)$$

- $\circ~~{
 m Systematic}~{
 m errors}~{
 m cancel}~{
 m out}~{
 m between}~\sigma_{pd}~{
 m \&}~\sigma_{pp}$
- Direct observable in experiment

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

• Preliminary result with ${\sim}70\%$ of FY 2014 & 2015 data

- Systematic errors
 - H contamination of LD2 target
 - Background subtraction
 - Tracking efficiency correction
- $\sigma_{pd}/2\sigma_{pp}$ always > 1 in measured *x* range

Extraction of $\bar{d}(x)/\bar{u}(x)$ — Step 2

- Derive $\bar{d}(x)/\bar{u}(x)$ from $\sigma_{pd}/2\sigma_{pp}$
 - This relation is not accurate at high x_{ta}

$$rac{\sigma_{pd}(x_{ta})}{2\sigma_{pp}(x_{ta})}pproxrac{1}{2}\left(1+rac{ar{d}(x_{ta})}{ar{u}(x_{ta})}
ight)$$

because the assumption " $x_{be} \gg x_{ta}$ " breaks

- $\circ~$ Iterative calculation from $ar{d}/ar{u}$ to $\sigma_{pd}/2\sigma_{pp}$
- 1. Have the measured $\sigma_{pd}/2\sigma_{pp}~(\equiv R_{meas})$
- 2. Initialize $\bar{d}(x)/\bar{u}(x) = 1$
- 3. Calculate the cross-section ratio ($\equiv R_{pred}$) without assuming $x_{be} \gg x_{ta}$:

$$\sigma \propto \sum_{q=u,d} e_q^{-2} \left\{ q_{be}(x_{be}) ar{q}_{ta}(x_{ta}) + ar{q}_{be}(x_{be}) q_{ta}(x_{ta})
ight\}$$

- •• Use event-by-event measured kinematics $(x_{be} \& x_{ta})$
- •• Take $u(x), d(x) \& \bar{u}(x) + \bar{d}(x)$ from CT10 PDF
- 4. Adjust $\bar{d}(x)/\bar{u}(x)$ to reduce $R_{pred} R_{meas}$
- 5. Go back to #3 until $R_{pred} \approx R_{meas}$

/w mass

0.8 0.7 0.6 0.5 0.4 0.3 Y mass

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Preliminary result

- Systematic errors
 - Errors of cross-section ratio
 - Errors of CT10 PDF
 - $\circ ~ar{d}/ar{u}$ outside the measured x range
- $\bar{d}/\bar{u} > 1$ at high x also

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

Comparison with other measurements

- All agree at small x
- $\circ~ar{d}/ar{u}~{
 m at}~x\sim 0.3~{
 m seems}~{
 m higher}~{
 m by}~{
 m SeaQuest}$
 - ... Physical reasons for this difference are being investigated

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Comparison with PDF models

• Will take data in FY 2017 with upgraded detectors to increase the statistics

Recent Unpolarized PDFs & d/\bar{u}

0.2

0.5

Summary

- Internal structure of proton
 - $^{\circ}$ Large flavor asymmetry $ar{d}(x)/ar{u}(x)$ was observed
 - $\circ~$ SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan process
 - Various aspects (like $\bar{d}(x)$ vs $\bar{u}(x)$, $\Delta \bar{d}(x)$ vs $\Delta \bar{u}(x)$ & $L_{q,\bar{q}}$) are being studied together by experiments & theories
- SeaQuest experiment @ Fermilab
 - $^\circ~$ Recorded 1.1×10^{18} protons on targets by July 2016
 - $\circ~$ Data taking continues in FY2017 with upgraded hardware
 - $^\circ~$ Analyzed 0.6 imes 10 18 protons for preliminary $ar{d}/ar{u}$
- Method & results of $\bar{d}(x)/\bar{u}(x)$ measurement
 - $\circ~{
 m Cross-section}~{
 m ratio}~\sigma_{p+d}/2\sigma_{p+p}~{
 m was}~{
 m measured}$
 - $\circ~\bar{d}(x)/\bar{u}(x)$ was extracted with LO calculation
 - $~\circ~~ \bar{d}(x)/\bar{u}(x) > 1$ was found up to x=0.58
 - The difference from E866 result is being investigated