International Workshop on Strangeness Nuclear Phsics 2017

Dynamics of kaonic nuclei in an improved quark mass density-dependent model

Renli Xu (徐仁力) Department of information technology, Nanjing University of chinese Medicine

13, March, 2017

Ekimae Campus, Osaka Electro-communication University

Collaborators

Z. Ren Nanjing Univ., China

C. Wu Shanghai Institute of Applied Physics, China

W. –L. Qian Universidade de Sao Paulo, Brazil

JUTIME

Introduction to the improved quark mass density-dependent model

Theoretical framework for kaonic nuclei

Results and discussion

Summary

Introduction to the improved quark mass density-dependent model

Introduction to IQMDD

- Self-consistent mean-field models for nuclear structure
- Hartree-Fock-Bogoliubov method (HFB) H. J. Mang, Phys. Rep. 18, 325 (1975).
 Relativistic mean-field model (RMF)
 - J. Walecka, Annals of Physics 83, 491 (1974). P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

 Extended Relativistic mean-field models
 The quark-meson coupling model (QMC) P. A. M. Guichon, Physics Letters B 200, 235 (1988).
 The quark mean field model (QMF) H. Toki, U. Meyer, A. Faessler, and R. Brockmann, Phys. Rev. C 58, 3749 (1998).

Introduction to IQMDD

According to the QMDD model, suggested by Fowler et al., the masses of u, d quarks and strange quarks depend on the baryon number density n_B .

$$m_q = \frac{B}{3n_B}(q = u, d, \overline{u}, \overline{d}), \ m_{s,\overline{s}} = m_{s_0} + \frac{B}{3n_B}$$

G. N. Fowler et al., Z. Phys. C 9, 271 (1981)

The IQMDD Lagrangian density at hadronic level

$$\begin{split} L &= \overline{\varphi}[i\gamma^{\mu}\partial_{\mu} - M_{N}^{*}(\sigma) - g_{\omega}\gamma^{\mu}\omega_{\mu} - \frac{g_{\rho}}{2}\gamma^{\mu}\tau \cdot \rho_{\mu} - \frac{e}{2}\gamma^{\mu}(1+\tau_{3})A_{\mu} \\ &+ \frac{f_{\omega}g_{\omega}}{2M_{N}}\sigma^{\mu\nu}\partial_{\nu}\omega_{\mu}]\varphi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - U(\sigma) - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} \\ &- \frac{1}{4}G^{\mu\nu}G_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho^{\mu}\rho_{\mu} + \eta(g_{\rho}^{2}\rho_{\mu}\rho^{\mu})(g_{\omega}^{2}\omega_{\mu}\omega^{\mu}) - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} \end{split}$$

Introduction to IQMDD

The effective nucleon mass is obtained from the bag energy which reads

$$M_{N}^{*} = \sum_{q} E_{q} = \sum_{q} \frac{4}{3} \pi R^{3} \frac{\Gamma_{q}}{(2\pi)^{3}} \int_{0}^{K_{F}^{q}} \sqrt{m_{q}^{*2} + k^{2}} (\frac{dN_{q}}{dk}) dk$$

where,
$$m_q^* = m_q - g_\sigma^q \sigma$$

The bag radius R can be determined by using the equilibrium condition for the nucleon bag

$$\frac{\delta M_N^*}{\delta R} = 0$$

While the expression of M_N^* for RMF is taken as

$$M_N^* = M_N - g_\sigma \sigma$$

IQMDD model has a nonlinear relationship with the σ field rather than RMF model

$$\left(\frac{\partial M_N^*}{\partial \sigma}\right)_R = -g_\sigma \times \begin{pmatrix} 1 \\ c(\sigma) \end{pmatrix} \text{ for } \begin{pmatrix} \text{RMF(NL3,FSU,...)} \\ \text{IQMDD} \end{pmatrix}$$

Theoretical framework for kaonic nuclei in IQMDD

Formulas of the IQMDD model for kaonic nuclei

$$L = L_{N} + \partial_{\mu} \overline{K} \partial^{\mu} K - m_{K}^{2} \overline{K} K + g_{\sigma K} m_{K} \overline{K} K \sigma$$

+ $\left(i g_{\omega K} \omega_{\mu} + i g_{\rho K} \tau \cdot \rho_{\mu} + i \frac{e}{2} (1 + \tau_{3}) A_{\mu} \right) \left(K \partial^{\mu} \overline{K} - \overline{K} \partial^{\mu} K \right)$
+ $\left[g_{\omega K} \omega_{\mu} + g_{\rho K} \tau \cdot \rho_{\mu} + \frac{e}{2} (1 + \tau_{3}) A_{\mu} \right]^{2} \overline{K} K$

Using the Euler-Lagrange equation one obtains the Dirac equation for nucleons as follow

$$\begin{bmatrix} i\gamma^{\mu}\partial_{\mu} - M_{N}^{*} - g_{\omega}\gamma^{0}\omega_{0} - \frac{g_{\rho}}{2}\gamma^{0}\tau_{3}\rho_{0} + \frac{f_{\omega}g_{\omega}}{2M_{N}}\sigma^{0i}\partial_{i}\omega_{0} \\ -\frac{e}{2}\gamma^{0}\left(1 + \tau_{3}\right)A_{0}\end{bmatrix}\varphi = 0$$

The equations of motion for the mesons and photon can be written as

(1)

(3)

$$\left(-\Delta + m_{\sigma}^{2}\right)\sigma = -\frac{\partial M_{N}^{*}}{\partial \sigma}\rho_{s} - b\sigma^{2} - c\sigma^{3} + g_{\sigma K}m_{K}\overline{K}K$$
(2)

$$\left(-\Delta + m_{\omega}^{2}\right)\omega_{0} = g_{\omega}\rho_{\nu} + \frac{f_{\omega}g_{\omega}}{2M_{N}}\rho_{0}^{T} - g_{\omega K}\rho_{K^{-}} - 2\eta g_{\rho}^{2}g_{\omega}^{2}\rho_{0}^{2}\omega_{0}$$

$$\left(-\Delta + m_{\rho}^{2}\right)\rho_{0} = \frac{g_{\rho}}{2}\rho_{3} - g_{\rho K}\rho_{K^{-}} - 2\eta g_{\rho}^{2}g_{\omega}^{2}\rho_{0}\omega_{0}^{2}$$

$$-\Delta A_0 = e\rho_p - e\rho_{K^-}$$
(5)

(4)

The density of K^- meson P_{K^-} is given by

$$\rho_{K^{-}} = 2 \left[\operatorname{Re} E_{K^{-}} + g_{\omega K} \omega_{0} + g_{\rho K} \rho_{0} + e A_{0} \right] \overline{K} K$$
(6)

The integration of P_{K^-} over the whole volume is normalized to the number of antikaon, which is one in our calculation.

The Klein-Gordon equation of motion for the K^- meson acquires the form

$$\left[-\Delta + (m_K^2 - E_{K^-}^2) + \tilde{\Pi}\right]\overline{K} = 0$$

• K^- meson absorption in the nuclear medium

To evaluate the K^- decay width, one allows the selfenergy to become complex

(7)

$$\tilde{\Pi} = \operatorname{Re} \tilde{\Pi} - i \operatorname{Im} \tilde{\Pi}$$

$$= -g_{\sigma K} m_{K} \sigma - 2 \left(\operatorname{Re} E_{K^{-}} \right) \left[g_{\omega K} \omega_{0} + g_{\rho K} \rho_{0} + eA_{0} \right]$$

$$- \left[g_{\omega K} \omega_{0} + g_{\rho K} \rho_{0} + eA_{0} \right]^{2} - i \operatorname{Im} \tilde{\Pi}$$

The complex eigenenergy is given as

$$E_{K^{-}} = \operatorname{Re} E_{K^{-}} - i\Gamma_{K^{-}} / 2$$

Two kinds of antikaonic absorption in the nuclear medium are considered.

$$\overline{K}N \to \pi\Sigma, \ \pi\Lambda; \qquad \overline{K}NN \to YN$$

Then the imaginary part of the potential ${\rm Im}\tilde{\Pi}$ is written as

$$\operatorname{Im} \tilde{\Pi} = \operatorname{Im} \tilde{\Pi}^{(1)} + \operatorname{Im} \tilde{\Pi}^{(2)} = 2 \left(\operatorname{Re} E_{K^{-}} \right) f_1 V_0 \frac{\rho_{\nu} \left(r \right)}{\rho_0} + 2 \left(\operatorname{Re} E_{K^{-}} \right) f_2 V_0 \frac{\rho_{\nu}^2 \left(r \right)}{\rho_0^2}$$

The mesonic and nonmesonic decay channels are dominated by the final Σ states

$$f_1 = 0.8 f_{1\Sigma}, f_2 = 0.2 f_{2\Sigma}$$

$$f_1 = 0.7 f_{1\Sigma} + 0.1 f_{1\Lambda}, \ f_2 = 0.2 f_{2\Sigma}$$

C. Vander Velde-Wilquet, J. Sacton, J. H.Wickens, D. N. Tovee, and D. H. Davis, Nuovo Cimento A **39**, 538 (1977).

J. Yamagata, H. Nagahiro, Y. Okumura et al., Prog. Theor. Phys. 114, 301 (2005).

T. Sekihara, J. Yamagata-Sekihara, D. Jido, Y. Kanada-En'yo, Phys. Rev. C 86, 065205 (2012). The imaginary potential depth V_0 strongly depends on the model adopted.

- E. Friedman, A. Gal, C.J. Batty, Phys. Lett. B 308, 6 (1993).
- E. Friedman, A. Gal, J. Mares, A. Cieply, Phys. Rev. C 60, 024314 (1999).

$$V_0 \sim 50 \mathrm{MeV}$$

A. Ramos et al., Nucl. Phys. A 691, 258 (2001).

$$V_0 \sim 15 \mathrm{MeV}$$

The imaginary potential depth V_0 is set to be in the range of 15 ~ 50 MeV.

 K^- optical potential

The difference in K^- potential depths between different approachs

T.Waas, W. Weise, Nucl. Phys. A 625, 287 (1997).

$$U_{K^{-}}(\rho_0) \sim -120 \text{MeV}$$

V. Koch, Phys. Lett. B 337, 7 (1994).

$$U_{K^{-}}(\rho_0) \sim -100 \mathrm{MeV}$$

A. Cieply, E. Friedman, A. Gal, and J. Mares, Nucl. Phys. A 696, 173 (2001)

$$U_{K^{-}}(\rho_0) \approx -60 \sim -50 \text{MeV}$$

• The ω -K and ρ -K coupling constants are adopted from the SU(3) relation assuming ideal mixing

$$2g_{\omega K} = 2g_{\rho K} = 6.04$$

J. Schaffner, I.N. Mishustin, Phys. Rev. C 53, 1416 (1996).

The σ-K coupling is fixed by varying the optical potential from -80MeV to -120MeV.

A. Martinez Torres, K.P. Khemchandani, E. Oset, Eur. Phys. J. A 36, 211 (2008)

$$g_{\sigma K} = 0$$

$$U_{K^{-}}(\rho_0) \approx -70 \sim -50 \text{MeV}$$

(NL3, NL3*, IU-FSU,IQMDD2*)

Results and discussion

1. K⁻ binding energy

The calculated $K^$ binding energies of the 1s nuclear state in the ${}^{32}SiK^{-}$ nucleus by using the IQMDD model (IQMDD2*) and RMF models (NL3, NL3* and IUFSU).

2. decay widths

The widths (Γ_{κ^-}) of the 1s K⁻-nuclear state in the ${}^{32}SiK^{-}$ nucleus as a function of the imaginary potential depth by using the IQMDD model (IQMDD2*) and other RMF models (NL3, NL3* and IU-FSU) for different absorption.

D. Gazda, E. Friedman, A. Gal, J. Mares, Phys. Rev. C 76, 055204 (2007).

The shrinkage effects for the kaonic nuclei

X.H. Zhong, G.X. Peng, L. Li, P.Z. Ning, Phys. Rev. C 74, 034321 (2006). D. Gazda, E. Friedman, A. Gal, J. Mares, Phys. Rev. C 76, 055204 (2007).

Kaon and nucleon densities of ${}^{16}OK^{-}$ for various interaction parameters a₃. Increasing absolute a₃ values correspond to increasing curves. The thin curves represent the core nucleus.

X.-R. Zhou, H.-J. Schulze, Nucl. Phys. A 914, 332 (2013).

The effects of K^- meson on the properties of bubble nuclei in the light mass region.

The nuclear density of ²⁴Ne and ²⁴NeK⁻ nuclei for 1s K⁻-nuclear state in the NL3 and the IQMDD model.

The nuclear density of ³²Ar and ³² ArK⁻ nuclei for 1s K⁻-nuclear state in the NL3* and the IQMDD model, with or without the secondary $\pi\Lambda$ decay mode for absorption through the $KN \rightarrow \pi \Sigma$.

Single-particle energies in ⁴²Ca and ${}^{42}CaK^{-}$. The left column in each panel represents energy levels for ${}^{42}Ca$, while the right ones are for ${}^{42}CaK^{-}$.

R.-Y. Yang, W.-Z. Jiang, Q.-F. Xiang, D.-R. Zhang, and S.-N. Wei, Eur. Phys. J.A 50, 188 (2014)

Nucleon singleparticle energies of ³⁴Si and ³⁴SiK⁻ nuclei in the NL3 and the IQMDD model by taking $g_{\sigma K} = 0$ and $U_{K^-}(\rho_0)$ to be -100MeV.

The calculated scalar and vector potentials of nucleon of 1s K^- -nuclear state in ³⁴Si and ³⁴SiK⁻ nuclei by using NL3, NL3*, IU-**FSU and IQMDD** models.

The density distribution of $1s_{1/2}$, 2s1/2 and $1d_{3/2}$ neutron states of ${}^{34}Si$ and ${}^{34}SiK^-$ nuclei in $1s K^-$ -nuclear state by using the NL3 and the IQMDD model, one assumes $U_{K^-}(\rho_0) = -100$ MeV.

1. The antikaon optical potential $U_{K^-}(\rho_0)$ has a sizable effect on the K⁻ binding energy. It is found that the K⁻ binding energy B_{K^-} increases when the antikaon optical potential $U_{K^-}(\rho_0)$ becomes deeper.

2. The antikaon optical potential $U_{K^-}(\rho_0)$ also has a significant effect on the decay width Γ_{K^-} . When the antikaon optical potential becomes deeper, the calculated width Γ_{κ^-} decreases.

3. When the antikaon optical potential $U_{K^-}(\rho_0)$ becomes more negative, the central nuclear density in kaonic nuclei increases. As a result, the nucleon bubble may disappears by embedding the K^- meson in the possible bubble nuclei.

4. the K^- embedment can lead to the pseudospin orbit splitting, and result in the pseudospin symmetry breaking in kaonic nuclei. Acknowledgement

Special thanks to the valuable discussions from

D. Gazda X.H. Zhong

Thank you

The phase-space suppression factor corresponding to mesonic decay channel is written as

$$f_{1Y} = \frac{M_{01}^3}{M_1^3} \sqrt{\frac{[M_1^2 - (m_\pi + m_Y)^2][M_1^2 - (m_\pi - m_Y)^2]}{[M_{01}^2 - (m_\pi + m_Y)^2][M_{01}^2 - (m_\pi - m_Y)^2]}} \times \Theta(M_1 - m_\pi - M_Y)$$

Where,

$$M_{01} = m_K + M_N$$

$$M_1 = \operatorname{Re} E_{K^-} + M_N$$

The phase-space suppression factor corresponding to nonmesonic decay channel is written as

$$f_{2Y} = \frac{M_{02}^3}{M_2^3} \sqrt{\frac{[M_2^2 - (m_N + m_Y)^2][M_2^2 - (m_N - m_Y)^2]}{[M_{02}^2 - (m_N + m_Y)^2][M_{02}^2 - (m_N - m_Y)^2]}} \times \Theta(M_2 - m_N - M_Y)$$

Where,

$$M_{02} = m_K + 2M_N$$

$$M_2 = \operatorname{Re} E_{K^-} + 2M_N$$

assuming UK–(ρ 0) = –100MeV in the NL3 model, the strength of the scalar and vector potential of a nucleon at the center of the 34SiK– increase about 160 MeV and 118MeV, respectively, compared to those in the 34Si.

