A possible new Λ^* resonance with J=3/2 in Λ_c decay and $K^-p \rightarrow \Lambda\eta$

Kiyoshi Tanida (JAEA) SNP2017@Osaka EC Univ. 14 Mar. 2017

Doubly Cabibbo suppressed decay

- Observed for the first time in baryons
- The rarest decay of $\Lambda_{\rm c}$

 $BR(\Lambda_{\rm c}^+ \to pK^+\pi^-) = (1.61 \pm 0.23^{+0.07}_{-0.08}) \times 10^{-4}$

2.15

2.25

22

23

 $M(pK^{+}\pi^{-})$ [GeV/c²]

2.35

2.4

Cabibbo favored channel

Dalitz plot: $\Lambda_c^+ \rightarrow p K^- \pi^+$ [PRL117.011801]

Prediction from theory side

• Miyahara, Hyodo & Oset, PRC 92, 055204 (2015)

Then, what's that?

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than Λ,Σ resonances in this region
 - Λ(1670): 25-50 MeV
 - Σ(1660): 40-200 MeV
 - Σ(1670): 40-80 MeV
 - Λ (1690): ~60 MeV
- BG shape is strange maybe due to interference with BG amplitude?

A new idea

- 2 independent groups claim there is a new narrow Λ^{*} resonance at this energy with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3/2^{+}$ (P₀₃), M=1671+2-8 MeV, $\Gamma=10+22-4$ MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}$ (D₀₃), M=1668.5 \pm 0.5 MeV, $\Gamma=1.5 \pm 0.5$ MeV
- The reason is the same
 - From K⁻p → Λη measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Especially the angular distribution \rightarrow Model independent
 - Parity is not determined
- There is no state in quark models
 - It must be an exotic
 - *udsss*?

Crystall Ball data for K⁻p $\rightarrow \Lambda \eta$

• Total cross section – this can be explained by usual $\Lambda(1670)1/2^{-}(S_{01})$ resonance

Differential cross section (or angular distribution)

s-channel

• $S_{1/2}$ $W(\theta, \varphi) \propto |Y_{00}|^2 = \text{const} - \text{uniform}$

- $P_{1/2}$ spin non-flip + flip $W(\theta, \varphi) \propto \frac{2}{3} |Y_{10}|^2 + \frac{1}{3} |Y_{11}|^2 = \text{const}$
- Interference?

 $W(\theta, \varphi) \propto \frac{2}{3} |Y_{10} + \delta Y_{00}|^2 + \frac{1}{3} |Y_{11}|^2$

→ The intereference term $\propto \tilde{Y}_{10} Y_{00}^* \propto \cos \theta$

• $\cos^2 \theta$ term needs J=3/2 or higher amplitude

Example distribution $3/2 \rightarrow 1/2 + 0$ $-\lambda$ =1 (P-wave) $J_{,=3/2} \rightarrow J_{,'=1/2}: m = \Delta J_{,=1}$ $W(\theta, \varphi) \propto |Y_{11}|^2 \propto \sin^2 \theta$ $J_{,=1/2} \rightarrow J_{,'=1/2, -1/2: m=\Delta J_{,=0,1}$ (weight by C-G coefficient) $W(\theta, \varphi) \propto \frac{2}{2} |Y_{10}|^2 + \frac{1}{2} |Y_{11}|^2 \propto 3\cos^2 \theta + 1$ $-\lambda$ =2 (D-wave) $J_{7}=3/2 \rightarrow J_{7}'=\pm 1/2$: m= $\Delta J_{7}=1,2$ $W(\theta,\varphi) \propto \frac{1}{r} |Y_{21}|^2 + \frac{4}{r} |Y_{22}|^2 \propto \sin^2 \theta$

J_z=1/2 → J_z'=±1/2: m=ΔJ_z=0,1

$$W(\theta, \varphi) \propto \frac{2}{5} |Y_{20}|^2 + \frac{3}{5} |Y_{21}|^2 \propto 3\cos^2 \theta + 1$$

Generally, λ cannot be distinguished

Differential cross sections (1)

Differential cross sections (2)

- Flat near the threshold
 - Expected for J=1/2 (S-wave)
- Concave-up around p_K=734 MeV/c (vs=1669 MeV)
- Flat again for $p_K > 750 \text{ MeV/c}$ (vs=1677 MeV)
- Concave shape requires J=3/2 amplitude
 → reason for a narrow resonance; model independent

Measurement@Belle

- The peak in the M(pK⁻) spectrum in $\Lambda_c \rightarrow pK^-\pi^+$ decay is due to the new Λ^* resonance?
- If yes, key measurements are
 - J=3/2 angular distribution (correlation) between π⁺ and K⁻ 1+3cos²θ for pure J=3/2 amplitude flat for pure J=1/2 amplitude
 - I=0, strongly couples to Λη channel
 → Important to see Λη channel
 - Width
- Parity is also important, but...
 - Needs measurement of polarization of Λ in the $\Lambda\eta$ channel.
 - In principle possible, but needs very high statistics
 - Practically difficult @Belle, maybe possible at Belle2

Angular correlation in Dalitz plot

- m_A , $m_B = m_{DE}$: fixed
- Then, m_{DC}^2 (or m_{CE}^2) and $\cos\theta_{DC}$ have linear relation. ($\cos\theta_{DC} = \pm 1 \rightarrow edges$ of the resonance line)
- Intensity of resonance line reflects angular distribution.

Dalitz plot: $\Lambda_c^+ \rightarrow p K^- \pi^+$ [PRL117.011801]

New experiment at J-PARC

- Repeat the Kp $\rightarrow \Lambda \eta$ experiment again with HypTPC (or with J-PARC E31 setup)
- Principle
 - K beam momentum: 720-770 MeV/c
 2 settings: 735 MeV/c & 755 MeV/c (±3%)
 → K1.8BR or K1.1 beamline
 - Momentum resolution: 1 MeV/c or better \rightarrow Can identify narrow resonance of Γ =1.5 MeV
 - Detect $\Lambda \rightarrow p\pi^-$, identify η by missing mass
 - → Mass resolution of HypTPC does not affect Λ^* mass resolution, but helps to reduce backgrounds
 - Both Λ and η go to forward direction
 On the threshold, both have β = 0.4
 → We need rather small acceptance

Construction of the HypTPC

A Full Simulation on the HypTPC Performance

2017/01/12 Slide 31

Preliminary ELPH Test Results

○ A positron beam track is clearly reconstructed.

Yield estimation

- Beam intensity: 30 k/spill
- Target: Liq. H₂ 5 cm (0.35 g/cm² or 2.1x10²³/cm²)
- Reaction rate: 6.3/spill for 1 mb
- Acceptance & efficiency: 0.3?
 ← need a simulation
- Event rate: 1200/h
 → 200k events in a week.
 Cf. Crystal Ball: 2700 events in total

Trigger

- Interaction rate: 250/spill for total cross section of 40 mb
 → Strong trigger is not necessary
- Trigger: two (or more) charged particles with one of them being proton
 - Proton selection: large signal (~ 4 MIP) in hodoscope.
 - reduction of kaon decay background, too.
 - Proton hits forward segments only.
- Other reactions, such as Kp $\rightarrow \pi \Lambda$, can be taken at the same time.

Identify parity

- Angular distribution is the same for 3/2⁺ (P wave) and 3/2⁻ (D wave)
 - Again, we need polarization of the final Λ
- Crystal-Ball data is very poor for polarization
 - Support for new resonance is not obtained

Polarization – Parity in CB data

Crystal ball data is average of 722-750 MeV/c
 & 750-770 MeV/c, not for each momentum.
 ⇔ Meanwhile, calculations are done on the points.

Identify parity

- Angular distribution is the same for 3/2⁺ (P wave) and 3/2⁻ (D wave)
 - Again, we need polarization of the final Λ
- Crystal-Ball data is very poor for polarization
 - Support for new resonance is not obtained
- How we can distinguish P&D?
 - P wave no node, D wave node
- We need δp~0.05 for each momentum/angle bin
 → Large statistics needed
 x16: δP 0.2 → 0.05
 x10: binning 2 → 20
 → Need ~2 weeks of beamtime. Looks feasible

 \rightarrow Need ~2 weeks of beamtime. Looks feasible

Summary

- Hint of a new narrow Λ^* resonance is observed in $\Lambda_c \rightarrow pK^-\pi^+$ and $pK^- \rightarrow \Lambda\eta$ around 1670 MeV.
 - Are they the same?
 - Spin 3/2?
- No narrow spin 3/2 resonance in this region in QM
 → must be an exotic. udsss pentaquark?
- Spin determination (& hence the confirmation of the resonance) would be possible using $\Lambda_{\rm c} \rightarrow {\rm pK^-}\pi^+$ data in Belle
- Parity determination needs a new experiment at J-PARC, using HypTPC, developed for H dibaryon search.