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Table 1
Summary of the present calculations. B.E.: total binding energy. ρ(0): nucleon density at the center of the system. Rrms: root-mean-square
radius of the nucleon system. ν: width parameter of a Gaussian wave packet used in the calculation. β: deformation parameter for the nucleon
system. ppnK−† and 8BeK−†: AY’s results

B.E. [MeV] ΓK [MeV] ρ(0) [fm−3] Rrms [fm] ν [fm−2] β

3He 7.65 – 0.15 1.54 0.22 0.02
ppnK− 113 24 1.39 0.72 1.12 0.19
ppnK−† 116 20 1.10 0.97

8Be 46.7 – 0.13 2.38 0.21 0.60
8BeK− 159 43 0.76 1.42 0.52 0.55
8BeK−† 168 38 ∼ 0.85

Fig. 1. Calculated density contours of ppnK−. Comparison between (a) usual 3He and (b) 3HeK− is shown in the size of 5 by 5 fm. Individual
contributions of (c) proton, (d) neutron and (e) K− are given in the size of 3 by 3 fm.

24 MeV. The present result is very similar to the AY
prediction: BK = 108 MeV and ΓK = 20 MeV. We
have not considered the decay width from the non-
mesonic decay (K̄NN → ΛN/ΣN ), but according
to AY it is estimated to be about 12 MeV [1]. The
width of ppnK− remains still narrower than that of
Λ(1405), even when the non-mesonic decay is taken
into account.
Surprisingly, the central density (“uncorrelated den-

sity”) of the system amounts to 8.2-times the normal
density due to the shrinkage effect. Fig. 1(a) and (b)
shows a comparison between 3He and 3HeK−. In or-

der to see how the bound K̄ changes the nucleus in
more detail we show the calculated density distribu-
tions of the constituents in Fig. 1(c)–(e). Apparently,
the proton distribution is more compact than the neu-
tron distribution. This phenomenon is attributed to
the property of the K̄N interaction. Table 2 shows
how protons and a neutron in ppnK− contribute to
the kinetic energy and the expectation value of the
K̄N interaction, and also to each root-mean-square
radius. This table together with Fig. 1 can be inter-
preted as follows. Since the K−p interaction is much
stronger than theK−n one, the protons distribute com-
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Abstract

Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic
theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the e↵ective
Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy
hadrons from many di↵erent points of view. We emphasize the importance of the following topics:
(i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD
vacuum properties and hadron modifications in nuclear medium. We pick up three di↵erent groups of
heavy hadrons, quarkonia (J/ , ⌥), heavy-light mesons (D/D̄, B̄/B) and heavy baryons (⇤c, ⇤b). The
modifications of those hadrons in nuclear matter provide us with important information to investigate
the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not
only in nuclear matter with infinite volume, but also in atomic nuclei with finite baryon numbers, to
serve future experiments.
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1 Introduction

It is an important problem to understand hadron properties based on the fundamental theory of the strong

interaction, Quantum Chromodynamics (QCD). Due to the non-trivial features of the QCD dynamics at

low energies, the hadron physics shows us many interesting and even unexpected non-trivial phenomena.

The fact that hadronic phenomena are so rich implies that various studies from many di↵erent views are

useful and indispensable to reveal the nature of the hadron dynamics. Not only isolated hadrons but

also hadronic matter under extreme conditions of high temperature, of high baryon density, and of many

di↵erent flavors provide important hints to understand the hadron dynamics.

One of familiar forms of hadronic matter is the atomic nucleus, the composite system of protons and

neutrons. The nuclear physics has been developed so far, based on various phenomenological approaches

(shell models, collective models, and so on). Recently, ab-initio calculations are being realized such that

many-body nuclear problems are solved starting from the bare nucleon-nucleon interaction determined

phenomenologically with high precision [1–3]. Yet a large step forward has been made; the lattice QCD

has derived the nucleon-nucleon interaction [4, 5]. Thus the so far missing path from QCD to nucleus is

now being exploited.

Nevertheless, if we look at the problem, for instance, neutron stars, we confront with a di�culty in

explaining the so-called twice of the solar mass problem. Because of the high density environment in

2
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Fig. 2. Energy levels of D̄(∗)NN , B(∗)NN and P
(∗)
Q NN with I = 1/2 and JP = 0− and 1− (solid lines). The complex

energies for resonances are given as Ere − iΓ /2, where Ere is a resonance energy and Γ /2 is a half decay width.
Thresholds (subthresholds) are denoted by dashed (dashed-dotted) lines.

The Gaussian ranges bn and BN are given by the form of geometric series as

bn = b1a
n−1, BN = B1A

N−1. (10)

For the sum of Eq. (7), we include all possible coupled channels to obtain solutions with
sufficiently good accuracy. For instance, we include orbital angular momentum of l1, l2 ! 2.
Furthermore, we consider two independent isospin states to form the total isospin I = 1/2. For
instance, we include the NN subsystems of I = 0 and 1 which are combined with the D̄(∗)

meson of I = 1/2 for the total I = 1/2.
By diagonalizing the total Hamiltonian using the three-body bases introduced above, we ob-

tain eigenenergies and coefficient C
(c)
nl1,Nl2,L,s12S,I12I

. We also calculate the poles for resonances
as complex eigenvalues by using the complex scaling method [41–44].

4. Numerical results

Let us present the results of D̄(∗)NN and B(∗)NN for JP = 0−. We obtain bound states both
of D̄(∗)NN and B(∗)NN with energy levels shown in Fig. 2. The bound state of D̄(∗)NN , whose
binding energy is −5.2 MeV, locates below the threshold of D̄N(1/2−) + N . Here D̄N(1/2−)

is the bound state of D̄(∗) and N with binding energy −1.6 MeV for JP = 1/2− and I = 0
as discussed in Refs. [14,15]. Therefore, the three-body state of D̄(∗)NN is more bound than
the two-body state of D̄(∗)N , as naturally expected. We also find the B(∗)NN state with the
binding energy −26.2 MeV. The B(∗)NN state is more bound than the D̄(∗)NN state, because
the mixing effect between PNN and P ∗NN is enhanced, when P and P ∗ mesons become more
degenerate.

Y. Yamaguchi, S.Y., A. Hosaka, Nucl. Phys. 
A927, 110 (2014) 

S. Maeda, M. Oka, A. Yokota, E. Hiyama, 
Y-R. Liu, Pog. Ther. Exp. Phys. 2016, 023D02 
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corresponding binding energy of the J/ψ–deuteron system is B = 9.5 MeV. Thus, in Fig. 5, the
relation approaches B = 9.5 MeV when aeff approaches −∞.

The effective scattering length aeff may not correspond directly to that of the physical J/ψ–N
scattering. In fact, for J = 0, we find V (J=0,T =0)

eff = v0 − vs = veff(1/2), and then aeff is reduced to
aJ=1/2 for the J/ψ–N (J = 1/2) state. Similarly, for J = 2, we can associate aeff with aJ=3/2. In
contrast, for J = 1, there is no one-to-one correspondence between aeff and the physical scattering
length. This is just the scattering length given by the potential Eq. (20) or (22), which does not
correspond to a definite spin of the J/ψ–N system.

Figure 6 shows a close-up of the offset of the binding energies of the J/ψ–deuteron and ηc–
deuteron systems. The relation for the ηc–deuteron system (T = 0) is almost identical to that of
J/ψ–deuteron (T = 0), except for the large decay width of ηc, which is not taken into account here
but will be discussed later. We find that the critical value of the scattering length to have a J/ψ–
deuteron bound state is −0.95 fm. This is a much stronger attraction than the recent lattice QCD
results a ≃ −0.35 fm [15], which is equivalent to veff ≃ −16.7 MeV. So there is little possibility
of making a J/ψ–deuteron bound state according to the recent lattice QCD data. However, it is
interesting to see that the critical value of the depth of the effective potential to have a J/ψ–nucleus
bound state is reduced from −72.6 MeV (A = 1) to −33 MeV (A = 2). Thus we expect that the
situation may improve for A ≥ 3 or 4 and there may exist a J/ψ–nucleus bound state.
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BAYAR, XIAO, HYODO, DOTÉ, OKA, AND OSET PHYSICAL REVIEW C 86, 044004 (2012)

3000 3100 3200 3300 3400 3500 3600 3700 3800

s
1/2

[MeV]

0

1

2

3

4

5

|T
|2

FIG. 12. Modulus-squared of the three-body scattering amplitude
for I = 1/2 and J = 1 (with δG̃) with reduced NN radius.

B. Quasibound states in the variational approach

Now we investigate the same system in the variational
approach. We, first, adopt the HN1R potential for the nuclear
force. As a result of the variational calculation, we have found
that the total spin J = 1 system (INN = 0) is unbound with
respect to the "∗

cN threshold. A bound state of the spin J = 0
system (INN = 1) is found at

B ∼ 225 MeV,

measured from the DNN threshold (∼3745 MeV). This
corresponds to the total energy of the three-body system as

MB ∼ 3520 MeV.

We also examine the Minnesota force and Av18 potential.
The results are summarized in Table I, together with the
contributions from the individual terms in Eq. (18).

As seen in the Table I, the DNN system in the J = 0
channel is bound below the "∗

cN threshold (B ∼ 209 MeV)

TABLE I. Results of the energy compositions in the variational
calculation for the ground state of the DNN system with total isospin
I = 1/2 (range parameter as = 0.4 fm). Terms bound and unbound
are defined with respect to the "∗

cN threshold. All the numbers are
given in MeV.

HN1R J = 0 Minnesota Av18
J = 1 J = 0 J = 0

Unbound Bound Bound Bound
B 208 225 251 209
MB 3537 3520 3494 3536
#πYcN — 26 38 22
Ekin 338 352 438 335
V (NN ) 0 −2 19 −5
V (DN ) −546 −575 −708 −540
Tnuc 113 126 162 117
ENN 113 124 181 113
P (odd) 75.0% 14.4% 7.4% 18.9%

for all the NN potentials employed.1 A large kinetic energy of
the deeply bound system is overcome by the strong attraction
of the DN potential, while the NN potential adds a small
correction. Comparing the results with three different nuclear
forces, we find that the binding energy is smaller when the
NN potential has a harder repulsive core (see Appendix A).

In the J = 1 channel, the ground-state energy is obtained
slightly above the "∗

cN threshold. The fact that the J = 1
channel is unbound is confirmed by changing the parameter µ
in the trial wave function, which controls the size of the total
system [30]. By increasing the system size, the total energy
gradually approaches the "∗

cN threshold. This indicates that
the lowest-energy state is indeed a two-body scattering state
of the "∗

cN channel. A large fraction of the odd component
in this channel (∼75%) is realized to enhance the INN = 1
component which has larger fraction of the IDN = 0 than the
INN = 0 component. In fact, pure |(DN )I=0N⟩ state can be
decomposed into INN = 0 and INN = 1 components with the
ratio 1:3. Since the INN = 1 state is the odd state in J = 1
(SNN = 1) channel, the 75% fraction of the odd component
indicates that the DN pair forms the "∗

c . We also examine
the J = 1 channel with the Minnesota force. Although the
repulsive core is soft in this case, no bound "∗

cN is found.
Using the imaginary part of the DN potential, we evaluate

the mesonic decay width of the quasibound state in the J =
0 channel, #πYcN . The results are 20–40 MeV as shown in
Table I. This corresponds to the result of FCA without the
D absorption, where the width is less than 10 MeV. Note,
however, that, in the variational approach, we have evaluated
the width perturbatively, while in the FCA the evaluation is
done nonperturbatively. In this sense, #πYcN obtained in the
variational approach can only be regarded as an estimation of
the mesonic decay width.

C. Structure of the DN N quasibound state

To further investigate the structure of the DNN systems,
we calculate the expectation values of various distances of the
obtained wave function. The results of the root-mean-square
radii and the relative distances are shown in Table II. Except
for the Av18 case where the wave function spreads due to
the weaker binding, the size of the DNN bound state in the
J = 0 channel is smaller than the K̄NN system, in which the
NN and K̄N distances are RNN ∼ 2.2 fm and RK̄N ∼ 1.9 fm.
It is, on the other hand, acceptable to use the reduced size
of Eq. (10) for the NN distribution in the FCA calculation,
given the uncertainty that arises from the choice of the NN
interaction. The large relative distances in the J = 1 channel
also reflect the nature of the scattering state in this channel.

In view of the different values of RNN obtained from the
use of different NN potentials (see Table II) and the different
binding obtained in each case (see Table I), we redo the
calculations in the FCA changing the NN form factor of
Eq. (10). We find a change in the binding from RNN = 2.62 fm
to 1.55 fm of 10 MeV (more bound) versus 16 MeV in

1Av18 case is almost at the "∗
cN threshold, but we confirm that the

wave function is localized as we will see in Sec. V C.

044004-10
M. Bayer, C. W. Xiao, T. Hyodo, A. Dote, M. Oka, 
E. Oset, Phys. Rev. C86, 044004 (2012) 
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emission, the decay width is very small due to the close
thresholds [33].

4. There is no isospin effect for the D̄(∗)
s meson due

to isospin 0. This is complementary to the case of
the D̄(∗) meson with isospin 1/2, where both isospin-
independent interaction and isospin-dependent inter-
action contribute simultaneously.

By using these similarities and differences of D̄(∗)
s and

D̄(∗) mesons, we can study the properties the Kondo ef-
fect for the Q̄q mesons in nuclear matter in multiple per-
spectives. For example, it was shown that the Kondo
effect induced by the isospin-exchange interaction for the

D̄(∗)
s meson and the nucleon can exist in nuclear matter

and in atomic nuclei [7, 10]. This is complementary to
the Kondo effect induced by the spin-exchange interac-

tion. We may consider the charge-conjugate state D(∗)
s

and D(∗) mesons as well. In this case, however, we have
to consider additional channels such as DsN → KΛc,
which should be covered elsewhere. The difference of
the properties between the D̄(∗)

s (D̄(∗)) meson and the

D(∗)
s (D(∗)) meson arises essentially from the breaking

of charge conjugation at finite baryon number density.

The study of D(∗)
s and D(∗) mesons is not covered in the

present study.
The paper is organized as the following. In Sec. II, we

introduce the interaction Lagrangian for the D̄(∗)
s me-

son and the nucleon based on HQS. In Sec. III, adopting
the perturbative approach, we present that the effective

interaction between a D̄(∗)
s meson and a nucleon in nu-

clear matter becomes enhanced at the low-energy scale
in infrared region, whose scale of singularity is given by
the Kondo scale. Then, in Sec. IV, we proceed to inves-
tigate the physical meaning of the Kondo scale beyond
the perturbation. We consider the mean-field approxi-
mation and show that the Kondo scale is in fact related
to the mixing strength between the D̄(∗)

s meson and the
nucleon, leading to the non-trivial behavior of the spec-
tral function of the impurity particle in nuclear matter.
We find that HQS plays the significantly important role
to realize the Kondo effect as the result of the mixing
of the D̄s meson and the D̄∗

s meson in nuclear matter.
The final section is devoted for the conclusion and the
outlook.

II. INTERACTION MODEL

As the effective interaction between the nucleon (ψ)

and the D̄(∗)
s meson (P (∗)

sv ), we introduce the point-like
(contact) interaction whose Lagrangian is given in gen-
eral from chiral symmetry and HQS by

Lint =
1

2

∑

i

ci ψ̄ΓiψTrH̄svΓiHsv, (1)

with the coupling constants ci (i = 1, . . . , 5) for the Dirac
matrices Γ1 = 1, Γ2 = γµ, Γ3 = σµν , Γ4 = γµγ5, Γ5 = γ5.

The heavy-meson effective field is defined by [13, 14]

Hsv =
(
γµP ∗

svµ + iγ5Psv

) 1 + v/

2
, (2)

in the frame with four-velocity vµ for the vector-field P ∗
svµ

for (sQ̄)spin 1 (vµP ∗
svµ = 0) and the pseudoscalar-field Psv

for (sQ̄)spin 0. We define H̄sv = γ0H†
svγ

0. We consider

either proton or neutron for the nucleon, because D̄(∗)
s

meson is blind to the nucleon isospin.
We consider the non-relativistic limit for the nucleon

field and write ψ = (ϕ, 0)t with two-component spinor ϕ.
By defining cs = −(c1− c2) and ct = 2c3+ c4, we rewrite
Lint in the rest frame vµ = (1, 0⃗) as

Lint = csϕ
†ϕ
(
δijP ∗i†

sv P ∗j
sv + P †

svPsv

)

+ ict
∑

k

ϕ†σkϕ
(
ϵijkP ∗i†

sv P ∗j
sv −

(
P ∗k†
sv Psv−P †

svP
∗k
sv

))
,

(3)

with the Pauli matrices σk (k = 1, 2, 3) for spin. The
first (second) term in the right-hand-side gives the spin-
nonexchange (spin-exchange) interaction.

In terms of HQS, the D̄(∗)
s N state is classified to the

HQS singlet state or the HQS doublet state [34, 35]. The
HQS singlet channel is given by −(1/2)D̄sN(2S1/2) +

(
√
3/2)D̄∗

sN(2S1/2) and the HQS doublet channel is

given by (
√
3/2)D̄sN(2S1/2) + (1/2)D̄∗

sN(2S1/2) and
D̄∗

sN(4S3/2). The interaction Lagrangian in Eq. (3) gives
the couplings −cs − 3ct and −cs + ct for the HQS singlet
and doublet, respectively. Therefore, the ground state
for ct > 0 (ct < 0) in Eq. (3) should be the HQS singlet
(doublet) state. Notice that this is comparable with what
is expected in the D̄(∗)N system. The ground state of
D̄(∗)N is the HQS doublet, when the one-pion-exchange
potential is adopted [22–25].

III. KONDO SCALE

We consider the effective coupling for cs and ct in the
interaction (3) at low-energy scale in nuclear matter. For
this purpose, we apply the renormalization group equa-
tion in perturbation, assuming the small coupling con-
stants.

We set the zero point of the heavy meson energy at
the D̄∗

s meson mass. This is a reasonable setting when
the D̄∗

s meson is injected as a static particle with zero
momentum into nuclear matter. The mass position of
the D̄s meson is −δM . We introduce the Pvs and P ∗µ

vs
propagators with residual four-momentum kµ

i

2(v ·k + δM) + iη
,

iδij
2v ·k + iη

, (4)

for Pvs and P ∗i
vs (i = 1, 2, 3), respectively, with infinites-

imally small and positive number η > 0 [13, 14]. The
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by

(p/+m)

(
i

p2−m2 + iη
−2πθ(p0)δ(p

2−m2)θ(kF−|p⃗ |)
)
,

(5)

with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations

d

dℓ
cs00(ℓ) = 0, (6)

d

dℓ
cs11(ℓ) = 0, (7)

d

dℓ
ct10(ℓ) =

mkF
2π2

ct10(ℓ)ct11(ℓ), (8)

d

dℓ
ct01(ℓ) =

mkF
2π2

ct01(ℓ)ct11(ℓ), (9)

d

dℓ
ct11(ℓ) =

mkF
2π2

ct11(ℓ)
2, (10)

with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
tices of ϕ†ϕP †

svPsv, ϕ†ϕP ∗k†
sv P ∗k

sv , ϕ†σkϕ ϵijkP ∗i†
sv P j

sv,
ϕ†σkϕP ∗k†

sv Psv and ϕ†σkϕP †
svP

∗k
sv (summed over i, j, k)

at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) = cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
mkF
2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK ≃ kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no
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nucleon	
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by
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−2πθ(p0)δ(p
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)
,
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with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations

d
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cs00(ℓ) = 0, (6)
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cs11(ℓ) = 0, (7)
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ct10(ℓ)ct11(ℓ), (8)
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ct01(ℓ)ct11(ℓ), (9)
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2, (10)

with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
tices of ϕ†ϕP †

svPsv, ϕ†ϕP ∗k†
sv P ∗k

sv , ϕ†σkϕ ϵijkP ∗i†
sv P j

sv,
ϕ†σkϕP ∗k†

sv Psv and ϕ†σkϕP †
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∗k
sv (summed over i, j, k)

at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) = cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
mkF
2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK ≃ kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗
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meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗
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vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
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Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
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kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
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with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations
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cs00(ℓ) = 0, (6)
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with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
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at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) = cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
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2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK ≃ kF exp
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− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no
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by the medium effect. Following the “poor man’s scaling
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at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) = ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) = cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
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rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by
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Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗
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meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗
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mass is set to be at the Fermi surface. If the D̄s meson
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with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
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with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
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at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) ≃ ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) ≃ cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
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and hence the effective coupling constants in ct-term
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energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This
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Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗
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meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
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s meson does not decay to the D̄s meson, because
the interaction process D̄∗
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vanishes.

We leave a comment before closing this section. In
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mass is set to be at the Fermi surface. If the D̄s meson
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choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no

Kondo scale 
(infrared singularity)	


spin-nonexchange term 

spin-exchange term 

2. Kondo effect for Ds
- and Ds*- meson	


Λ~Λ＋dΛ	


Λ~Λ＋dΛ	


d

dℓ
cs(ℓ) = 0 (1)

d

dℓ
ct(ℓ) =

mkF
2π2

ct(ℓ)
2 (2)

cs(ℓ) = cs (3)

ct(ℓ) =
ct

1−
mkF
2π2

ctℓ

(4)

∑

i,σ

ψi†
σ ψ

i
σ = 1

D̄(∗)
s ↔ 1

2
ψi
σ

1

d

dℓ
cs(ℓ) = 0 (1)

d

dℓ
ct(ℓ) =

mkF
2π2

ct(ℓ)
2 (2)

cs(ℓ) = cs (3)

ct(ℓ) =
ct

1−
mkF
2π2

ctℓ

(4)

∑

i,σ

ψi†
σ ψ

i
σ = 1

D̄(∗)
s ↔ 1

2
ψi
σ

1

ct>0 

S.Y., K. Sudoh, arXiv:1607.07948 [hep-ph] 



2  Renormalization group equation	


2. Kondo effect for Ds
- and Ds*- meson	


3

+�

FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by

(p/+m)

(
i

p2−m2 + iη
−2πθ(p0)δ(p

2−m2)θ(kF−|p⃗ |)
)
,

(5)

with the nucleon mass m and the Fermi momentum
kF [36].
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are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
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tion in nuclear matter as shown in Fig. 1. Considering
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tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
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case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
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stant. The physical meaning of this result is interesting.
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cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗
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mass is set to be at the Fermi surface. If the D̄s meson
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Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to
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By using these similarities and differences of D̄(∗)
s and D̄(∗)

90

mesons, we can study the properties the Kondo effect for91

the Q̄q mesons in nuclear matter in multiple perspectives.92

For example, it was shown that the Kondo effect induced93

by the isospin-exchange interaction for the D̄(∗)
s meson and94

the nucleon can exist in nuclear matter and in atomic nuclei95

[7,10]. This is complementary to the Kondo effect induced96

by the spin-exchange interaction. We may consider the97

charge-conjugate state D(∗)
s and D(∗) mesons as well. In this98

case, however, we have to consider additional channels such99

as DsN → K!c, which should be covered elsewhere. The100

difference of the properties between the D̄(∗)
s (D̄(∗)) meson and101

the D(∗)
s (D(∗)) meson arises essentially from the breaking of102

charge conjugation at finite baryon number density. The study103

of D(∗)
s and D(∗) mesons is not covered in the present study.104

The paper is organized as follows. In Sec. II, we introduce105

the interaction Lagrangian for the D̄(∗)
s meson and the nucleon106

based on HQS. In Sec. III, adopting the perturbative approach,107

we present that the effective interaction between a D̄(∗)
s meson108

and a nucleon in nuclear matter becomes enhanced at the109

low-energy scale in infrared region, whose energy scale of110

singularity is given by the Kondo scale. Then, in Sec. IV,111

we proceed to investigate the physical meaning of the Kondo112

scale beyond the perturbation. We consider the mean-field113

approximation and show that the Kondo scale is in fact related114

to the mixing strength between the D̄(∗)
s meson and the nucleon,115

leading to the nontrivial behavior of the spectral function of116

the impurity particle in nuclear matter. We find that HQS plays117

the significantly important role to realize the Kondo effect as118

the result of the mixing of the D̄s meson and the D̄∗
s meson in119

nuclear matter. The final section is devoted for the conclusion120

and the outlook.121

II. INTERACTION MODEL122

As the effective interaction between the nucleon (ψ) and123

the D̄(∗)
s meson (P (∗)

sv ), we introduce the point-like (contact)124

interaction whose Lagrangian is given in general from chiral125

symmetry and HQS by126

Lint = 1
2

∑

i

ci ψ̄#iψ TrH̄sv#iHsv (1)

with the coupling constants ci (i = 1, . . . ,5) for the Dirac127

matrices #1 = 1, #2 = γ µ, #3 = σµν , #4 = γ µγ5, #5 = γ5.128

The heavy-meson effective field is defined by129

Hsv = (γ µP ∗
svµ + iγ5Psv)

1 + v/

2
, (2)

in the frame with four-velocity vµ for the vector-field P ∗
svµ130

for (sQ̄)spin 1 (vµP ∗
svµ = 0) and the pseudoscalar-field Psv for131

(sQ̄)spin 0 [13,14]. We define H̄sv = γ 0H
†
svγ

0. We consider132

either proton or neutron for the nucleon, because D̄(∗)
s meson133

is blind to the nucleon isospin. In this framework, the heavy134

meson fields Psv and P ∗
svµ are composed of the direct product135

of the heavy antiquark Q̄ and the strange quark s, provided that136

the s is constituted not only of a strange quark but also of all137

the components including virtual pairs of quark-antiquark and138

gluons allowed dynamically to exist in the Fock space [13,14].139

This is so-called brown muck, and exhibits the nonperturbative 140

properties of the light component in the heavy hadron. The total 141

spin of Q̄ and s is either zero or one, corresponding to Psv and 142

P ∗
svµ, respectively. Importantly, the spin-dependence of the 143

interaction between the Q̄ and the s is suppressed by the factor 144

O(1/mQ) with mQ the heavy quark mass. In the heavy quark 145

limit, therefore, the spin direction of the s is energetically free 146

from the spin of the Q, except for the assignment of the total 147

spin zero or one. The spin independence of the s plays the 148

crucially important roll in the following discussion. 149

We consider the nonrelativistic limit for the nucleon field 150

and write ψ = (ϕ,0)t with two-component spinor ϕ. By 151

defining cs = −(c1 − c2) and ct = 2c3 + c4, we rewrite Lint 152

in the rest frame vµ = (1,0⃗) as 153

Lint = csϕ
†ϕ

(
δijP ∗i†

sv P ∗j
sv + P †

svPsv

)

+ ict

∑

k

ϕ†σ kϕ
(
ϵijkP ∗i†

sv P ∗j
sv −

(
P ∗k†

sv Psv − P †
svP

∗k
sv

))

(3)

with the Pauli matrices σ k (k = 1,2,3) for spin. The first (sec- 154

ond) term in the right-hand side gives the spin-nonexchange 155

(spin-exchange) interaction. 156

In terms of HQS, the D̄(∗)
s N state is classified to the HQS 157

singlet state or the HQS doublet state [34,35]. The HQS singlet 158

channel is given by −(1/2)D̄sN (2S1/2) + (
√

3/2)D̄∗
s N (2S1/2) 159

and the HQS doublet channel is given by (
√

3/2)D̄sN (2S1/2) + 160

(1/2)D̄∗
s N (2S1/2) and D̄∗

s N (4S3/2). The interaction Hamilto- 161

nian from Eq. (3) gives the couplings −cs − 3ct and −cs + ct 162

for the HQS singlet and doublet, respectively. Therefore, the 163

ground state for ct > 0 (ct < 0) in Eq. (3) should be the HQS 164

singlet (doublet) state. Notice that this is comparable with what 165

is expected in the D̄(∗)N system. The ground state of D̄(∗)N 166

is the HQS doublet, when the one-pion-exchange potential is 167

adopted [22–25]. 168

III. KONDO SCALE 169

We consider the effective coupling for cs and ct in the 170

interaction (3) at low-energy scale in nuclear matter. For 171

this purpose, we apply the renormalization group equation 172

in perturbation, assuming the small coupling constants. 173

We set the zero point of the heavy meson energy at the 174

D̄∗
s meson mass. This is a reasonable setting when the D̄∗

s 175

meson is injected as a static particle with zero momentum 176

into nuclear matter. The mass position of the D̄s meson is 177

−δM . We introduce the Pvs and P
∗µ
vs propagators with residual 178

four-momentum kµ: 179

i

2(v ·k + δM) + iη
,

iδij

2v ·k + iη
, (4)

for Pvs and P ∗i
vs (i = 1,2,3), respectively, with infinitesimally 180

small and positive number η > 0 [13,14]. The nucleon propa- 181

gator with four-momentum pµ is given by 182

(p/+m)
(

i

p2−m2 + iη
−2πθ (p0)δ(p2−m2)θ (kF−|p⃗ |)

)

(5)

with the nucleon mass m and the Fermi momentum kF [36]. 183
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by

(p/+m)

(
i

p2−m2 + iη
−2πθ(p0)δ(p

2−m2)θ(kF−|p⃗ |)
)
,

(5)

with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations

d

dℓ
cs00(ℓ) = 0, (6)

d

dℓ
cs11(ℓ) = 0, (7)

d

dℓ
ct10(ℓ) =

mkF
2π2

ct10(ℓ)ct11(ℓ), (8)

d

dℓ
ct01(ℓ) =

mkF
2π2

ct01(ℓ)ct11(ℓ), (9)

d

dℓ
ct11(ℓ) =

mkF
2π2

ct11(ℓ)
2, (10)

with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
tices of ϕ†ϕP †

svPsv, ϕ†ϕP ∗k†
sv P ∗k

sv , ϕ†σkϕ ϵijkP ∗i†
sv P j

sv,
ϕ†σkϕP ∗k†

sv Psv and ϕ†σkϕP †
svP

∗k
sv (summed over i, j, k)

at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) ≃ ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) ≃ cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
mkF
2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK = kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no

Strong coupling 
breakdown of perturbation 

Weak coupling 
no transition between 

Ds
- and Ds*-	


ct>0 

ct<0 

high energy (l=0) 
low energy (l→∞) 

Fermi surface 
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longer the free state but is confined in the finite region

inside the D̄(∗)
s meson.

We denote the auxiliary fermion field by ψi
σ which is

labeled by the light-quark spin σ =↑, ↓ and the heavy-
quark spin i = 1, 2. The labeling of the heavy-quark
spin is introduced to specify the spin state of the heavy
quark with which the auxiliary fermion is confined.2

Based on that P (∗)
sv is given by the direct product of

light-quark spin and heavy-quark spin and that the
light-quark spin is expressed by ψi

σ/2, we consider the

correspondence between P (∗)
sv and ψi

σ given by Psv ↔
−(ψ2

↑ − ψ1
↓)/2

√
2, P ∗+1

sv ↔ ψ1
↑/2, P

∗0
sv ↔ (ψ2

↑ + ψ1
↓)/2

√
2

and P ∗−1
sv ↔ ψ2

↓/2 for P ∗1
sv =

(
−P ∗+1

sv + P ∗−1
sv

)
/
√
2,

P ∗2
sv = i

(
−P ∗+1

sv − P ∗−1
sv

)
/
√
2 and P ∗3

sv = P ∗0
sv . The

heavy-quark spin does not play any role in the dynam-
ics, but only serves the labeling of i for the light-quark
spin. In the following, the impurity means this auxiliary

fermion instead of the D̄(∗)
s meson. From Eq. (3), we

consider only the ct-term as the relevant term with the
Kondo effect in the low-energy scattering, and give the
interaction Hamiltonian

Hint =
ct
4

∑

i,k

ϕ†σkϕψi†σkψi. (13)

We change the interaction Hamiltonian in the coordi-
nate space to the one in the momentum space by using
the Fourier transformation

ϕσ(x) =
1√
V

∑

k

e−ik·xϕkσ, (14)

ψi
σ(x) =

1√
V
√∑

k′

∑

k

e−ik·xψi
σ, (15)

with the system volume V . We introduce the normal-
ization factor 1/

√∑
k′ for ψi

σ. We assume that ψi
σ

is independent of the three-dimensional momentum k
as the heavy impurity does not propagate in space.3

From Eq. (15), we notice that the commutation relation{
ψi†
σ ,ψj

ρ

}
= δijδσρ is imposed from

{
ψi†
σ (x),ψj

ρ(y)
}

=

δijδσρδ(3)(x− y).
Importantly, because the auxiliary fermion (ψi

σ) is spa-

tially confined in the D̄(∗)
s meson, we introduce the con-

straint condition
∑

σ

ψi†
σ (x)ψi

σ(x) = niδ(3)(x), (16)

with ni the probability of existence of the auxiliary
fermion in the heavy-quark spin i state, satisfying n1 +
n2 = 1. The auxiliary fermion exists only at x = 0,

2 Here only the spin of the light quark is important, and the color
is not necessary.

3 We use the same notation ψi
σ both in the coordinate space and

in the momentum space.

where the location in the D̄(∗)
s meson is supposed to be

the original point. By using Eq. (15), we find that the
constraint condition (16) is expressed by

∑

σ

ψi†
σ ψ

i
σ = ni, (17)

in the momentum space.
Considering the ct-term, based on Hint (13), we obtain

the Hamiltonian in momentum space

Heff =
∑

k,σ

ε̃kϕ
†
kσϕkσ − Ct

4

∑

k1,k2,σ

ϕ†
k1σ

ϕk2σ

+ 2
Ct

4

∑

i,k1,k2,σ1,σ2

ϕ†
k1σ1

ϕk2σ2ψ
i†
σ2
ψi
σ1

+ v
(
ψ1†
↓ − ψ2†

↑

) (
ψ1
↓ − ψ2

↑
)
+ λ

(∑

i,σ

ψi†
σ ψ

i
σ − 1

)
,

(18)

with ε̃k = εk − µ (µ ≃ k2F/2m) and Ct = V ct. The term
proportional to v < 0 is for the HQS breaking, i.e. the
mass splitting δM = |2v| between D̄s and D̄∗

s mesons.
The zero point of the meson energy is set to be the D̄∗

s
meson mass. To obtain Eq. (18), we use the constraint
condition,

∑
i,σ ψ

i†
σ ψ

i
σ = 1, from Eq. (17) and add this

condition in the last term with the Lagrange multiplier λ.
We can consider the constraint condition in such a way
that the auxiliary fermion is confined on the hypersphere
S3 with unit radius.

B. Mean-field approximation

The mean-field approach has been known as a useful
method to investigate the ground state with the Kondo
effect in the condense matter physics [38–40] (see also
Refs. [4, 41]). We apply the mean-field approximation
for the four-point interaction of ϕ†ϕψ†ψ in Eq. (18) as

ϕ†
kρϕlσψ

i†
σ ψ

i
ρ ≃− ⟨ψi†

σ ϕlσ⟩ϕ†
kρψ

i
ρ − ψi†

σ ϕlσ⟨ϕ†
kρψ

i
ρ⟩

+ ⟨ψi†
σ ϕlσ⟩⟨ϕ†

kρψ
i
ρ⟩+ δkℓδρσψ

i†
σ ψ

i
σ. (19)

We define the “gap” function

∆i ≡ −2
Ct

4

∑

k,σ

⟨ψi†
σ ϕkσ⟩, (20)

as the spin-singlet condensate of the nucleon (ϕkσ) and
the auxiliary fermion (ψi

σ). The gap ∆i gives the mix-
ing between the nucleon and the auxiliary fermion in the
ground state.4 This quantity is obtained by minimiz-
ing the total energy as the variational calculation, or by

4 In terms of HQS, the gap (∆1,∆2) belongs to the HQS singlet,
because the light degrees of freedom except for the heavy quark,
i.e. the nucleon and the auxiliary fermion, form the spin-singlet.

∑

i,σ

ψi†
σ ψ

i
σ = 1

D̄(∗)
s ↔ 1

2
ψi
σ

1

s quark field 
(σ: light-spin, i:heavy-quark spin)	


gap: mixing of s quark and nucleon 
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3
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FIG. 1. The diagrams at nucleon one-loop level. The sin-
gle (double) solid line indicate the propagator of the nucleon

(D̄(∗)
s meson).

nucleon propagator with four-momentum pµ is given by

(p/+m)

(
i

p2−m2 + iη
−2πθ(p0)δ(p

2−m2)θ(kF−|p⃗ |)
)
,

(5)

with the nucleon mass m and the Fermi momentum
kF [36].
The coupling constants cs and ct in nuclear matter

are not the same as those in vacuum, but get modified
by the medium effect. Following the “poor man’s scaling
method” [37], we consider the change of the coupling con-
stants perturbatively by the renormalization group equa-
tion in nuclear matter as shown in Fig. 1. Considering
the nucleon one-loop diagram, we obtain the renormal-
ization group equations

d

dℓ
cs00(ℓ) = 0, (6)

d

dℓ
cs11(ℓ) = 0, (7)

d

dℓ
ct10(ℓ) =

mkF
2π2

ct10(ℓ)ct11(ℓ), (8)

d

dℓ
ct01(ℓ) =

mkF
2π2

ct01(ℓ)ct11(ℓ), (9)

d

dℓ
ct11(ℓ) =

mkF
2π2

ct11(ℓ)
2, (10)

with ℓ = − lnΛ/kF for the infrared momentum cut-
off parameter Λ below and above the Fermi surface
in the loop integrals. Here cs00, cs11, ct11, ct10 and
ct01 are the effective coupling constants for the ver-
tices of ϕ†ϕP †

svPsv, ϕ†ϕP ∗k†
sv P ∗k

sv , ϕ†σkϕ ϵijkP ∗i†
sv P j

sv,
ϕ†σkϕP ∗k†

sv Psv and ϕ†σkϕP †
svP

∗k
sv (summed over i, j, k)

at scale Λ. As the initial condition for the renormaliza-
tion group equations, we consider cs00(0) = cs11(0) = cs
and ct11(0) = ct10(0) = ct01(0) ≃ ct at the initial en-
ergy scale ℓ ≃ 0 (Λ ≃ kF). As the solutions, we obtain
cs00(ℓ) = cs11(ℓ) ≃ cs, hence the effective coupling con-
stants in cs-term remain unchanged in nuclear matter.
In contrast, we obtain

ct11(ℓ) = ct10(ℓ) = ct01(ℓ) =
ct

1−
mkF
2π2

ctℓ

, (11)

and hence the effective coupling constants in ct-term
changes drastically due to the singularity in the infrared
energy scale for ct > 0, before the momentum cutoff pa-
rameter reaches the infrared limit ℓ→ ∞ (Λ → 0). This

scale of singularity is given by

ΛK = kF exp

(
− 2π2

mkFct

)
. (12)

Therefore, the spin-exchange term (ct-term) in Eq. (3)
becomes logarithmically enhanced at low-energy scatter-
ing due to the loop effect for ct > 0. The fixed point is
given by c∗t → ∞ at Λ → ΛK. This is essentially the
same as the Kondo effect known in the condensed mat-
ter physics [4, 5]. The energy scale ΛK relevant for the
Kondo effect is called the Kondo scale. The Kondo effect
does not break the heavy quark symmetry.

As a matter of course, for ct > 0, we should not take
literary the singularity in Eq. (11). This is rather a sig-
nal for the breakdown of perturbative treatment. It indi-

cates that the system of the D̄(∗)
s meson in nuclear matter

becomes strongly interacting one in the low-energy scat-
tering, and it may lead to formation of non-perturbative
objects such as bound and/or resonant states. This prob-
lem will be discussed in the next section.

Notice that there is no singularity for ct < 0. In this
case, the fixed point is c∗t → 0 at ℓ → ∞ (Λ → 0),
and hence the perturbative treatment remains valid in
the whole energy region due to the small coupling con-
stant. The physical meaning of this result is interesting.
First, the D̄∗

s meson does not have any spin-flip process
in nuclear matter. Second, the mixing between the D̄∗

s
meson and the D̄s meson in nuclear matter does not oc-
cur, because the ct-term is only the mixing term. Third,
the D̄∗

s meson does not decay to the D̄s meson, because
the interaction process D̄∗

sN → D̄sN for the nucleon N
vanishes.

We leave a comment before closing this section. In
the above calculation, it is important that the D̄∗

s meson
mass is set to be at the Fermi surface. If the D̄s meson
mass is at the Fermi surface, the scattering of the D̄(∗)

s

meson and the nucleon is not affected by the infrared
singularity, and the Kondo effect does not occur. The
choice of the energy zero point can be changed arbitrary.
However, it will be shown in the next section that the

positions of the D̄(∗)
s meson masses will be determined

uniquely in the mean-field approach.

IV. MEAN-FIELD APPROACH

A. Hamiltonian with auxiliary fermion fields

Let us investigate the ground state of the system under
the Kondo effect for ct > 0. For this purpose, we intro-
duce the “auxiliary” fermion fields. The light-quark spin
is decoupled from the heavy-quark spin in HQS, because
the heavy-quark spin is independent of the interaction
in the heavy quark limit [13, 14]. Hence, it is useful to

replace the degrees of freedom from the D̄(∗)
s meson to

the light quark (s quark) in the D̄(∗)
s meson. We call

this light quark an auxiliary fermion, because this is no

“Kondo resonance”	
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3
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r
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3. Kondo effect in atomic nuclei	


D meson	


“simple model” for atomic nucleus 
-shell model-like picture-	


Purpose: the ground state energy? 

k = 1	
 2	
 3	
 N	


nucleon sector (N states) 
↑/↓ for proton/neutron	


D sector	


εk	


H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK = g
∑(

ck′↓
†ck↑ T+ + ck′↑

†ck↓ T− + (ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK = g
∑(

ck′↓
†ck↑ T+ + ck′↑

†ck↓ T− + (ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK=g
∑(

ck′↓
†ck↑ T++ck′↑

†ck↓ T−+(ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

kinetic term	


Kondo (isospin-flipping) interaction 
ckσ: annihilation operator for nucleon in level k and isospin σ 
T+, T-, T3: isospin operator for D meson 

interaction HK	


à la Lipkin model	


Cf. π-exchange interaction: S.Y. and K.Sudoh, Phys. Rev. D80, 034008 (2009) 

cf. We consider one shell space. 
But this method can be extended 
to multi-shells.	


S.Y., Phys. Rev. C93, 065204 (2016)	
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TABLE I. Energy eigenvalues of the Hamiltonian (1) for n =
1. The numbers in parentheses are the numbers of degeneracy
factor.

number of valence nucleon n = 1

N I = 0 I = 1

any N ϵ− 3

2
Ng (1), ϵ (N−1) ϵ+ 1

2
Ng (1), ϵ (N−1)

TABLE II. Energy eigenvalues of the Hamiltonian (1) for n =
2. The notations are the same as Table I.

number of valence nucleon n = 2

N I = 1/2 I = 3/2

1 2ϵ (1) —

2 2ϵ− 3

2
Ng (1), 2ϵ (2), 2ϵ+ 1

2
Ng (1) 2ϵ+ 1

2
Ng (1)

3 2ϵ− 3

2
Ng (2), 2ϵ (5), 2ϵ+ 1

2
Ng (2) 2ϵ+ 1

2
Ng (2), 2ϵ (1)

4 2ϵ− 3

2
Ng (3), 2ϵ (10), 2ϵ+ 1

2
Ng (3) 2ϵ+ 1

2
Ng (3), 2ϵ (3)

up, down component of the isospin. We define T± and T3

as the raising/lowering operators and the z component of
the SU(2) isospin operator, and

T1 =
1

2
(T+ + T−) , (4)

T2 =
1

2i
(T+ − T−) . (5)

T1, T2 and T3 satisfy the commutation relation of the
SU(2) algebra

[Ta, Tb] = iϵabcTc, (6)

with a, b, c = 1, 2, 3.

We note that, in the Hamiltonian (1), there is a quan-
tum fluctuation of the impurity isospin, because the di-
rection of the impurity isospin is not fixed. Therefore,
the dynamics of the valence nucleon is always affected
by the isospin fluctuation of the impurity, and hence it
cannot be reduced to the one-body problem. This is one
of the interesting properties of the Kondo effect. The
purpose for us is to obtain the energy eigenvalues of the
Hamiltonian (1) by considering the isospin fluctuation.

B. Exact energy eigenvalues

1. Variational method for wave function

For simplicity, we consider the single-particle states
with energy ϵk = ϵ for the valence nucleons. We use
the representations | ↑ ⟩imp and | ↓ ⟩imp for the impurity
states with isospin ↑ and ↓, respectively. We also use

the representation |ψ(n)
I,I3

⟩ for the total state, composed
of an impurity and valence nucleons, with isospin I, its z
component I3 and the number of valence nucleon n. We
consider as example the n = 1, 2, 3 cases in the follow-
ings.

a. The n = 1 case. We consider isospin I = 0, 1.
For I = 0, we assume the wave function

|ψ(1)
0,0⟩ =

∑

Γk

(

ck↑
†|↓ ⟩imp − ck↓

†|↑ ⟩imp

)

, (7)

with unknown coefficients {Γk} = {Γ1, . . . ,ΓN}. By us-

ing H |ψ(1)
0,0⟩ = E|ψ(1)

0,0⟩, we obtain

ϵΓk −
3

2
g
∑

Γn = E Γk, (8)

and hence the energy eigenvalues

E = ϵ−
3

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (9)

The number in the parentheses are the number of degen-
eracy factor (n.d.f.).
For I = 1, considering I3 = 1, we assume the wave

function

|ψ(1)
1,1⟩ =

∑

Γkck↑
†|↑ ⟩imp, (10)

with the unknown coefficients {Γk}. By using H |ψ(1)
1,1⟩ =

E|ψ(1)
1,1⟩, we obtain the relation

ϵΓk +
1

2
g
∑

Γn = E Γk, (11)

and hence the energy eigenvalues

E = ϵ+
1

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (12)

We obtain the same values for I3 = 0, −1.
See Table I for summary.

b. The n = 2 case We consider I = 1/2, 3/2.
For I = 1/2, considering I3 = 1/2, we assume the wave

function
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1/2,1/2⟩ =
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3
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, (13)

with unknown coefficients Γ0
mn, Γ

1
mn having the proper- ties Γ0

mn = Γ0
nm, Γ1

mn = −Γ1
nm. Here we define

[cm
†⊗cn

†]00 =
1√
2

(

cm↑
†cn↓

† − cm↓
†cn↑

†) , (14)

“Exact solution”	
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TABLE I. Energy eigenvalues of the Hamiltonian (1) for n =
1. The numbers in parentheses are the numbers of degeneracy
factor.

number of valence nucleon n = 1

N I = 0 I = 1

any N ϵ− 3

2
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2
Ng (1), ϵ (N−1)
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2
Ng (2), 2ϵ (1)
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as the raising/lowering operators and the z component of
the SU(2) isospin operator, and
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(T+ + T−) , (4)
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1
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(T+ − T−) . (5)
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[Ta, Tb] = iϵabcTc, (6)
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states with isospin ↑ and ↓, respectively. We also use

the representation |ψ(n)
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0,0⟩ =
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)

, (7)

with unknown coefficients {Γk} = {Γ1, . . . ,ΓN}. By us-

ing H |ψ(1)
0,0⟩ = E|ψ(1)

0,0⟩, we obtain

ϵΓk −
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2
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∑

Γn = E Γk, (8)

and hence the energy eigenvalues

E = ϵ−
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Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (9)
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For I = 1, considering I3 = 1, we assume the wave

function
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1,1⟩, we obtain the relation
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Γn = E Γk, (11)

and hence the energy eigenvalues

E = ϵ+
1

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (12)

We obtain the same values for I3 = 0, −1.
See Table I for summary.

b. The n = 2 case We consider I = 1/2, 3/2.
For I = 1/2, considering I3 = 1/2, we assume the wave

function

|ψ(2)
1/2,1/2⟩ =

∑

{

Γ0
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†]00|↑ ⟩imp + Γ1
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(
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†⊗cn
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with unknown coefficients Γ0
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TABLE I. Energy eigenvalues of the Hamiltonian (1) for n =
1. The numbers in parentheses are the numbers of degeneracy
factor.

number of valence nucleon n = 1

N I = 0 I = 1
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TABLE II. Energy eigenvalues of the Hamiltonian (1) for n =
2. The notations are the same as Table I.

number of valence nucleon n = 2

N I = 1/2 I = 3/2

1 2ϵ (1) —

2 2ϵ− 3

2
Ng (1), 2ϵ (2), 2ϵ+ 1

2
Ng (1) 2ϵ+ 1

2
Ng (1)

3 2ϵ− 3

2
Ng (2), 2ϵ (5), 2ϵ+ 1

2
Ng (2) 2ϵ+ 1

2
Ng (2), 2ϵ (1)

4 2ϵ− 3

2
Ng (3), 2ϵ (10), 2ϵ+ 1

2
Ng (3) 2ϵ+ 1

2
Ng (3), 2ϵ (3)

up, down component of the isospin. We define T± and T3

as the raising/lowering operators and the z component of
the SU(2) isospin operator, and

T1 =
1

2
(T+ + T−) , (4)

T2 =
1

2i
(T+ − T−) . (5)

T1, T2 and T3 satisfy the commutation relation of the
SU(2) algebra

[Ta, Tb] = iϵabcTc, (6)

with a, b, c = 1, 2, 3.

We note that, in the Hamiltonian (1), there is a quan-
tum fluctuation of the impurity isospin, because the di-
rection of the impurity isospin is not fixed. Therefore,
the dynamics of the valence nucleon is always affected
by the isospin fluctuation of the impurity, and hence it
cannot be reduced to the one-body problem. This is one
of the interesting properties of the Kondo effect. The
purpose for us is to obtain the energy eigenvalues of the
Hamiltonian (1) by considering the isospin fluctuation.

B. Exact energy eigenvalues

1. Variational method for wave function

For simplicity, we consider the single-particle states
with energy ϵk = ϵ for the valence nucleons. We use
the representations | ↑ ⟩imp and | ↓ ⟩imp for the impurity
states with isospin ↑ and ↓, respectively. We also use

the representation |ψ(n)
I,I3

⟩ for the total state, composed
of an impurity and valence nucleons, with isospin I, its z
component I3 and the number of valence nucleon n. We
consider as example the n = 1, 2, 3 cases in the follow-
ings.

a. The n = 1 case. We consider isospin I = 0, 1.
For I = 0, we assume the wave function

|ψ(1)
0,0⟩ =

∑

Γk

(

ck↑
†|↓ ⟩imp − ck↓

†|↑ ⟩imp

)

, (7)

with unknown coefficients {Γk} = {Γ1, . . . ,ΓN}. By us-

ing H |ψ(1)
0,0⟩ = E|ψ(1)

0,0⟩, we obtain

ϵΓk −
3

2
g
∑

Γn = E Γk, (8)

and hence the energy eigenvalues

E = ϵ−
3

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (9)

The number in the parentheses are the number of degen-
eracy factor (n.d.f.).
For I = 1, considering I3 = 1, we assume the wave

function

|ψ(1)
1,1⟩ =

∑

Γkck↑
†|↑ ⟩imp, (10)

with the unknown coefficients {Γk}. By using H |ψ(1)
1,1⟩ =

E|ψ(1)
1,1⟩, we obtain the relation

ϵΓk +
1

2
g
∑

Γn = E Γk, (11)

and hence the energy eigenvalues

E = ϵ+
1

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (12)

We obtain the same values for I3 = 0, −1.
See Table I for summary.

b. The n = 2 case We consider I = 1/2, 3/2.
For I = 1/2, considering I3 = 1/2, we assume the wave

function

|ψ(2)
1/2,1/2⟩ =

∑

{

Γ0
mn[cm

†⊗cn
†]00|↑ ⟩imp + Γ1

mn

(

√

2

3
[cm

†⊗cn
†]11|↓ ⟩imp −

1√
3
[cm

†⊗cn
†]10|↑ ⟩imp

)}

, (13)

with unknown coefficients Γ0
mn, Γ

1
mn having the proper- ties Γ0

mn = Γ0
nm, Γ1

mn = −Γ1
nm. Here we define

[cm
†⊗cn

†]00 =
1√
2

(

cm↑
†cn↓

† − cm↓
†cn↑

†) , (14)
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TABLE I. Energy eigenvalues of the Hamiltonian (1) for n =
1. The numbers in parentheses are the numbers of degeneracy
factor.

number of valence nucleon n = 1

N I = 0 I = 1

any N ϵ− 3

2
Ng (1), ϵ (N−1) ϵ+ 1

2
Ng (1), ϵ (N−1)

TABLE II. Energy eigenvalues of the Hamiltonian (1) for n =
2. The notations are the same as Table I.

number of valence nucleon n = 2

N I = 1/2 I = 3/2

1 2ϵ (1) —

2 2ϵ− 3

2
Ng (1), 2ϵ (2), 2ϵ+ 1

2
Ng (1) 2ϵ+ 1

2
Ng (1)

3 2ϵ− 3

2
Ng (2), 2ϵ (5), 2ϵ+ 1

2
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2
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2
Ng (3) 2ϵ+ 1

2
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up, down component of the isospin. We define T± and T3

as the raising/lowering operators and the z component of
the SU(2) isospin operator, and

T1 =
1

2
(T+ + T−) , (4)

T2 =
1

2i
(T+ − T−) . (5)

T1, T2 and T3 satisfy the commutation relation of the
SU(2) algebra

[Ta, Tb] = iϵabcTc, (6)

with a, b, c = 1, 2, 3.

We note that, in the Hamiltonian (1), there is a quan-
tum fluctuation of the impurity isospin, because the di-
rection of the impurity isospin is not fixed. Therefore,
the dynamics of the valence nucleon is always affected
by the isospin fluctuation of the impurity, and hence it
cannot be reduced to the one-body problem. This is one
of the interesting properties of the Kondo effect. The
purpose for us is to obtain the energy eigenvalues of the
Hamiltonian (1) by considering the isospin fluctuation.

B. Exact energy eigenvalues

1. Variational method for wave function

For simplicity, we consider the single-particle states
with energy ϵk = ϵ for the valence nucleons. We use
the representations | ↑ ⟩imp and | ↓ ⟩imp for the impurity
states with isospin ↑ and ↓, respectively. We also use

the representation |ψ(n)
I,I3

⟩ for the total state, composed
of an impurity and valence nucleons, with isospin I, its z
component I3 and the number of valence nucleon n. We
consider as example the n = 1, 2, 3 cases in the follow-
ings.

a. The n = 1 case. We consider isospin I = 0, 1.
For I = 0, we assume the wave function

|ψ(1)
0,0⟩ =

∑

Γk

(

ck↑
†|↓ ⟩imp − ck↓

†|↑ ⟩imp

)

, (7)

with unknown coefficients {Γk} = {Γ1, . . . ,ΓN}. By us-

ing H |ψ(1)
0,0⟩ = E|ψ(1)

0,0⟩, we obtain

ϵΓk −
3

2
g
∑

Γn = E Γk, (8)

and hence the energy eigenvalues

E = ϵ−
3

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (9)

The number in the parentheses are the number of degen-
eracy factor (n.d.f.).
For I = 1, considering I3 = 1, we assume the wave

function

|ψ(1)
1,1⟩ =

∑

Γkck↑
†|↑ ⟩imp, (10)

with the unknown coefficients {Γk}. By using H |ψ(1)
1,1⟩ =

E|ψ(1)
1,1⟩, we obtain the relation

ϵΓk +
1

2
g
∑

Γn = E Γk, (11)

and hence the energy eigenvalues

E = ϵ+
1

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (12)

We obtain the same values for I3 = 0, −1.
See Table I for summary.

b. The n = 2 case We consider I = 1/2, 3/2.
For I = 1/2, considering I3 = 1/2, we assume the wave

function

|ψ(2)
1/2,1/2⟩ =

∑

{

Γ0
mn[cm

†⊗cn
†]00|↑ ⟩imp + Γ1
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(

√

2

3
[cm

†⊗cn
†]11|↓ ⟩imp −

1√
3
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)}

, (13)

with unknown coefficients Γ0
mn, Γ

1
mn having the proper- ties Γ0

mn = Γ0
nm, Γ1

mn = −Γ1
nm. Here we define

[cm
†⊗cn

†]00 =
1√
2

(
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TABLE I. Energy eigenvalues of the Hamiltonian (1) for n =
1. The numbers in parentheses are the numbers of degeneracy
factor.

number of valence nucleon n = 1

N I = 0 I = 1

any N ϵ− 3

2
Ng (1), ϵ (N−1) ϵ+ 1

2
Ng (1), ϵ (N−1)

TABLE II. Energy eigenvalues of the Hamiltonian (1) for n =
2. The notations are the same as Table I.

number of valence nucleon n = 2

N I = 1/2 I = 3/2

1 2ϵ (1) —

2 2ϵ− 3

2
Ng (1), 2ϵ (2), 2ϵ+ 1

2
Ng (1) 2ϵ+ 1
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Ng (1)
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up, down component of the isospin. We define T± and T3

as the raising/lowering operators and the z component of
the SU(2) isospin operator, and

T1 =
1

2
(T+ + T−) , (4)

T2 =
1

2i
(T+ − T−) . (5)

T1, T2 and T3 satisfy the commutation relation of the
SU(2) algebra

[Ta, Tb] = iϵabcTc, (6)

with a, b, c = 1, 2, 3.

We note that, in the Hamiltonian (1), there is a quan-
tum fluctuation of the impurity isospin, because the di-
rection of the impurity isospin is not fixed. Therefore,
the dynamics of the valence nucleon is always affected
by the isospin fluctuation of the impurity, and hence it
cannot be reduced to the one-body problem. This is one
of the interesting properties of the Kondo effect. The
purpose for us is to obtain the energy eigenvalues of the
Hamiltonian (1) by considering the isospin fluctuation.

B. Exact energy eigenvalues

1. Variational method for wave function

For simplicity, we consider the single-particle states
with energy ϵk = ϵ for the valence nucleons. We use
the representations | ↑ ⟩imp and | ↓ ⟩imp for the impurity
states with isospin ↑ and ↓, respectively. We also use

the representation |ψ(n)
I,I3

⟩ for the total state, composed
of an impurity and valence nucleons, with isospin I, its z
component I3 and the number of valence nucleon n. We
consider as example the n = 1, 2, 3 cases in the follow-
ings.

a. The n = 1 case. We consider isospin I = 0, 1.
For I = 0, we assume the wave function

|ψ(1)
0,0⟩ =

∑

Γk

(

ck↑
†|↓ ⟩imp − ck↓

†|↑ ⟩imp

)

, (7)

with unknown coefficients {Γk} = {Γ1, . . . ,ΓN}. By us-

ing H |ψ(1)
0,0⟩ = E|ψ(1)

0,0⟩, we obtain

ϵΓk −
3

2
g
∑

Γn = E Γk, (8)

and hence the energy eigenvalues

E = ϵ−
3

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (9)

The number in the parentheses are the number of degen-
eracy factor (n.d.f.).
For I = 1, considering I3 = 1, we assume the wave

function

|ψ(1)
1,1⟩ =

∑

Γkck↑
†|↑ ⟩imp, (10)

with the unknown coefficients {Γk}. By using H |ψ(1)
1,1⟩ =

E|ψ(1)
1,1⟩, we obtain the relation

ϵΓk +
1

2
g
∑

Γn = E Γk, (11)

and hence the energy eigenvalues

E = ϵ+
1

2
Ng (n.d.f. = 1), ϵ (n.d.f. = N − 1). (12)

We obtain the same values for I3 = 0, −1.
See Table I for summary.

b. The n = 2 case We consider I = 1/2, 3/2.
For I = 1/2, considering I3 = 1/2, we assume the wave

function

|ψ(2)
1/2,1/2⟩ =

∑

{

Γ0
mn[cm

†⊗cn
†]00|↑ ⟩imp + Γ1

mn

(

√

2

3
[cm

†⊗cn
†]11|↓ ⟩imp −

1√
3
[cm

†⊗cn
†]10|↑ ⟩imp

)}

, (13)

with unknown coefficients Γ0
mn, Γ

1
mn having the proper- ties Γ0

mn = Γ0
nm, Γ1

mn = −Γ1
nm. Here we define

[cm
†⊗cn

†]00 =
1√
2

(

cm↑
†cn↓

† − cm↓
†cn↑

†) , (14)

Case of nucleon #=1	


singlet w.f.	


linear algebraic equation	


solution !!	


ε	


ε-3Ng/2 : “Kondo bound state” 
 (superposed state of nucleons and D meson)	


k’ = 1	
 2	
 3	
 N	


Simple case: εk=ε	
 ε	


k = 1	
 2	
 3	
 N	


S.Y., Phys. Rev. C93, 065204 (2016)	




S.Y., Phys. Rev. C93, 065204 (2016)	


3. Kondo effect in atomic nuclei	

What’s about more general cases?	


Mean-field (+RPA) approach	


Step 2. Introduce Lagrange multiplier λ	


H=
∑

ϵkckσ
†ckσ+g

(∑
fσ

†fσ′ck′σ′
†ckσ−

1

2

∑
ck′σ

†ckσ

)
+λ

(∑
fσ

†fσ−1
)

H = HMF +Hfluc

HMF =
∑

ϵkckσ
†ckσ +

∑(
∆∗fσ

†ckσ +∆ckσ
†fσ

)
+ λ

∑
fσ

†fσ +
|∆|2

g
− λ

Hfluc=−g
∑(

fσ
†ckσ−⟨fσ†ckσ⟩

)(
ck′σ′

†fσ′−⟨ck′σ′
†fσ′⟩

)
− 1

2
g
∑

ck′σ
†ckσ +Ng

H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK=g
∑(

ck′↓
†ck↑ T++ck′↑

†ck↓ T−+(ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

Step 4. Variation by λ and Δ	


7

= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(
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and
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(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
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⎜
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⎜
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⎜

⎜

⎜
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⎜
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⎝
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⎟
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⎠
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as

HMF = ψ†Hcfψ +
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⎜
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⎜

⎜

⎜
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
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(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)
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D
(c1σ + · · ·+ cNσ)
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analysis may not be useful for intuitive understanding of
the result. In this section, introducing the mean-field ap-
proach based on Ref. [39–41], we discuss how this approx-
imation brings an easy way to obtain the ground state of
the Hamiltonian (1), and investigate the validity of the
mean-field approach by comparing the results with the
exact ones. We also consider the quantum fluctuation in
RPA beyond the mean-field approximation.
We note that the mean-field approach was applied

to the cases with continuous number-density of valence
fermions in infinitely large system in condensed matter
physics [39–41]. As emphasized in Introduction, the pur-
pose in the present discussion is to investigate the Kondo
effect in finite systems with discrete energy-levels of va-
lence nucleons in charm/bottom nuclei. For this purpose,
we apply the mean-filed approach to the finite-size system
with discrete energy-levels. As analogy, we remember
that the BCS theory, which is successful to describe the
superconducting state with continuous number-density
in infinitely large system, can be applied to pairings of
valence nucleons in finite nuclei [42].

A. Introducing auxiliary fermion fields

In order to describe the isospin of the impurity, we
introduce the auxiliary fermion field fσ (σ =↑, ↓) [39–
41]. They satisfy the fermion commutation relation
{fσ, fσ′

†} = δσσ′ and {fσ, fσ′} = 0. We rewrite the
isospin operators T+, T−, T3 of the impurity by using
fσ as

T+ = f↑
†f↓, (38)

T− = f↓
†f↑, (39)

T3 =
1

2
(f↑

†f↑ − f↓
†f↓). (40)

Because the number of the impurity should be always
equal to one, we need to impose the constraint condition
[39–41]

∑

fσ
†fσ = 1. (41)

The Fock space satisfying this condition is the physical
Fock space which should be obtained. The Fock space
with the other impurity numbers,

∑

fσ
†fσ = 0, 2, which

is indeed unphysical, needs to be excluded. In the mean-
field approximation, however, it will turn out that an
extension of the Fock space to the multiple impurity-
numbers is useful to analyze the ground state of the
Hamiltonian (1). In the followings, we consider sepa-
rately the two cases of g > 0 and g < 0 in the Hamilto-
nian (1).
We note that the above decomposition of the oper-

ators T+, T−, T3 can be given by boson fields instead
of the fermion fields. In the boson case, however, we
need to consider superposed fields of the bosons and the
valence nucleons, fermions, in the mean-field approxi-
mation, which may lead to some difficulty. Moreover,

the Fock space for the boson fields has to be extended
to infinite number of bosons in contrast to the fermion
case, where fermion numbers are limited to two at most.
Therefore, we consider that the fermion fields are more
convenient than the boson fields in the present analysis.

B. Isosinglet condensate (g > 0)

We consider the g > 0 case. First we discuss the mean-
field approximation, and second we investigate the fluc-
tuation by using RPA.

1. Mean-field approximation

We rewrite the Hamiltonian (1) as

H =
∑

ϵkckσ
†ckσ

+g

(

∑

fσ
†fσ′ck′σ′

†ckσ −
1

2

∑

ck′σ
†ckσ

)

+λ
(

∑

fσ
†fσ − 1

)

, (42)

by using the relations (38)-(40) and the identity

ck′↓
†ck↑ T+ + ck′↑

†ck↓ T− + (ck′↑
†ck↑ − ck′↓

†ck↓)T3

=
∑

fσ
†fσ′ck′σ′

†ckσ −
1

2

∑

ck′σ
†ckσ, (43)

where the constraint condition (41) is used 5. In the last
term in the right-hand side in Eq. (42), we consider the
constraint condition (41) by introducing the Lagrange
multiplier constant λ. Now we apply the mean-field ap-
proximation. We introduce the mean-field ⟨fσ†ckσ⟩ as an
expectation value of fσ

†ckσ, sandwiched by the ground
state, and define the isosinglet “gap” function [39–41]

∆ = −g
∑

⟨fσ†ckσ⟩. (44)

Using the relation

g
∑

fσ
†fσ′ck′σ′

†ckσ

= g
∑

fσ
†fσ′

(

−ckσck′σ′
† + δkk′δσσ′

)

= −g
∑

fσ
†ckσ ck′σ′

†fσ′ +Ng
∑

fσ
†fσ

= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩+ ⟨fσ†ckσ⟩

)

×
(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩+ ⟨ck′σ′
†fσ′⟩

)

+Ng

5 The second term in the right-hand side in Eq. (43) does not
include the flipping of the isospin of the valence nucleon, and
hence could be neglected for the Kondo effect [41]. However,
we keep this term throughout the analysis, because the present
discussion is devoted to comparison of the result in the mean-field
approximation with the exact solution.

Step 3. Apply mean-field (Δ) approx.	


H=
∑

ϵkckσ
†ckσ+g

(∑
fσ

†fσ′ck′σ′
†ckσ−

1

2

∑
ck′σ

†ckσ

)
+λ

(∑
fσ

†fσ−1
)

H = HMF +Hfluc

HMF =
∑

ϵkckσ
†ckσ +

∑(
∆∗fσ

†ckσ +∆ckσ
†fσ

)
+ λ

∑
fσ

†fσ +
|∆|2

g
− λ

Hfluc=−g
∑(

fσ
†ckσ−⟨fσ†ckσ⟩

)(
ck′σ′

†fσ′−⟨ck′σ′
†fσ′⟩

)
− 1

2
g
∑

ck′σ
†ckσ +Ng

H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK=g
∑(

ck′↓
†ck↑ T++ck′↑

†ck↓ T−+(ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

“gap” 
singlet	
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in infinitely large system, can be applied to pairings of
valence nucleons in finite nuclei [42].
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In order to describe the isospin of the impurity, we
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We note that the above decomposition of the oper-

ators T+, T−, T3 can be given by boson fields instead
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need to consider superposed fields of the bosons and the
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field approximation, and second we investigate the fluc-
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discussion is devoted to comparison of the result in the mean-field
approximation with the exact solution.
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where the constraint condition (41) is used again, we sep-
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and the fluctuation part Hfluc as
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∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
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0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗
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...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)
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− λ, (52)
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⎜

⎜
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⎜

⎜

⎜
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...
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⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟
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, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
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dNσ =
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√
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D
(c1σ + · · ·+ cNσ)

−
1√
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√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)
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analysis may not be useful for intuitive understanding of
the result. In this section, introducing the mean-field ap-
proach based on Ref. [39–41], we discuss how this approx-
imation brings an easy way to obtain the ground state of
the Hamiltonian (1), and investigate the validity of the
mean-field approach by comparing the results with the
exact ones. We also consider the quantum fluctuation in
RPA beyond the mean-field approximation.
We note that the mean-field approach was applied

to the cases with continuous number-density of valence
fermions in infinitely large system in condensed matter
physics [39–41]. As emphasized in Introduction, the pur-
pose in the present discussion is to investigate the Kondo
effect in finite systems with discrete energy-levels of va-
lence nucleons in charm/bottom nuclei. For this purpose,
we apply the mean-filed approach to the finite-size system
with discrete energy-levels. As analogy, we remember
that the BCS theory, which is successful to describe the
superconducting state with continuous number-density
in infinitely large system, can be applied to pairings of
valence nucleons in finite nuclei [42].

A. Introducing auxiliary fermion fields

In order to describe the isospin of the impurity, we
introduce the auxiliary fermion field fσ (σ =↑, ↓) [39–
41]. They satisfy the fermion commutation relation
{fσ, fσ′

†} = δσσ′ and {fσ, fσ′} = 0. We rewrite the
isospin operators T+, T−, T3 of the impurity by using
fσ as

T+ = f↑
†f↓, (38)

T− = f↓
†f↑, (39)

T3 =
1

2
(f↑

†f↑ − f↓
†f↓). (40)

Because the number of the impurity should be always
equal to one, we need to impose the constraint condition
[39–41]

∑

fσ
†fσ = 1. (41)

The Fock space satisfying this condition is the physical
Fock space which should be obtained. The Fock space
with the other impurity numbers,

∑

fσ
†fσ = 0, 2, which

is indeed unphysical, needs to be excluded. In the mean-
field approximation, however, it will turn out that an
extension of the Fock space to the multiple impurity-
numbers is useful to analyze the ground state of the
Hamiltonian (1). In the followings, we consider sepa-
rately the two cases of g > 0 and g < 0 in the Hamilto-
nian (1).
We note that the above decomposition of the oper-

ators T+, T−, T3 can be given by boson fields instead
of the fermion fields. In the boson case, however, we
need to consider superposed fields of the bosons and the
valence nucleons, fermions, in the mean-field approxi-
mation, which may lead to some difficulty. Moreover,

the Fock space for the boson fields has to be extended
to infinite number of bosons in contrast to the fermion
case, where fermion numbers are limited to two at most.
Therefore, we consider that the fermion fields are more
convenient than the boson fields in the present analysis.

B. Isosinglet condensate (g > 0)

We consider the g > 0 case. First we discuss the mean-
field approximation, and second we investigate the fluc-
tuation by using RPA.

1. Mean-field approximation

We rewrite the Hamiltonian (1) as

H =
∑

ϵkckσ
†ckσ

+g

(

∑

fσ
†fσ′ck′σ′

†ckσ −
1

2

∑

ck′σ
†ckσ

)

+λ
(

∑

fσ
†fσ − 1

)

, (42)

by using the relations (38)-(40) and the identity

ck′↓
†ck↑ T+ + ck′↑

†ck↓ T− + (ck′↑
†ck↑ − ck′↓

†ck↓)T3

=
∑

fσ
†fσ′ck′σ′

†ckσ −
1

2

∑

ck′σ
†ckσ, (43)

where the constraint condition (41) is used 5. In the last
term in the right-hand side in Eq. (42), we consider the
constraint condition (41) by introducing the Lagrange
multiplier constant λ. Now we apply the mean-field ap-
proximation. We introduce the mean-field ⟨fσ†ckσ⟩ as an
expectation value of fσ

†ckσ, sandwiched by the ground
state, and define the isosinglet “gap” function [39–41]

∆ = −g
∑

⟨fσ†ckσ⟩. (44)

Using the relation

g
∑

fσ
†fσ′ck′σ′

†ckσ

= g
∑

fσ
†fσ′

(

−ckσck′σ′
† + δkk′δσσ′

)

= −g
∑

fσ
†ckσ ck′σ′

†fσ′ +Ng
∑

fσ
†fσ

= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩+ ⟨fσ†ckσ⟩

)

×
(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩+ ⟨ck′σ′
†fσ′⟩

)

+Ng

5 The second term in the right-hand side in Eq. (43) does not
include the flipping of the isospin of the valence nucleon, and
hence could be neglected for the Kondo effect [41]. However,
we keep this term throughout the analysis, because the present
discussion is devoted to comparison of the result in the mean-field
approximation with the exact solution.

Step 3. Apply mean-field (Δ) approx.	


H=
∑

ϵkckσ
†ckσ+g

(∑
fσ

†fσ′ck′σ′
†ckσ−

1

2

∑
ck′σ

†ckσ

)
+λ

(∑
fσ

†fσ−1
)

H = HMF +Hfluc

HMF =
∑

ϵkckσ
†ckσ +

∑(
∆∗fσ

†ckσ +∆ckσ
†fσ

)
+ λ

∑
fσ

†fσ +
|∆|2

g
− λ

Hfluc=−g
∑(

fσ
†ckσ−⟨fσ†ckσ⟩

)(
ck′σ′

†fσ′−⟨ck′σ′
†fσ′⟩

)
− 1

2
g
∑

ck′σ
†ckσ +Ng

H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK=g
∑(

ck′↓
†ck↑ T++ck′↑

†ck↓ T−+(ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

“gap” 
singlet	
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lence nucleons in charm/bottom nuclei. For this purpose,
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valence nucleons in finite nuclei [42].
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nian (1).
We note that the above decomposition of the oper-

ators T+, T−, T3 can be given by boson fields instead
of the fermion fields. In the boson case, however, we
need to consider superposed fields of the bosons and the
valence nucleons, fermions, in the mean-field approxi-
mation, which may lead to some difficulty. Moreover,

the Fock space for the boson fields has to be extended
to infinite number of bosons in contrast to the fermion
case, where fermion numbers are limited to two at most.
Therefore, we consider that the fermion fields are more
convenient than the boson fields in the present analysis.

B. Isosinglet condensate (g > 0)

We consider the g > 0 case. First we discuss the mean-
field approximation, and second we investigate the fluc-
tuation by using RPA.

1. Mean-field approximation

We rewrite the Hamiltonian (1) as

H =
∑

ϵkckσ
†ckσ

+g

(

∑

fσ
†fσ′ck′σ′

†ckσ −
1

2

∑

ck′σ
†ckσ

)

+λ
(

∑

fσ
†fσ − 1

)

, (42)

by using the relations (38)-(40) and the identity

ck′↓
†ck↑ T+ + ck′↑

†ck↓ T− + (ck′↑
†ck↑ − ck′↓

†ck↓)T3

=
∑

fσ
†fσ′ck′σ′

†ckσ −
1

2

∑

ck′σ
†ckσ, (43)

where the constraint condition (41) is used 5. In the last
term in the right-hand side in Eq. (42), we consider the
constraint condition (41) by introducing the Lagrange
multiplier constant λ. Now we apply the mean-field ap-
proximation. We introduce the mean-field ⟨fσ†ckσ⟩ as an
expectation value of fσ

†ckσ, sandwiched by the ground
state, and define the isosinglet “gap” function [39–41]

∆ = −g
∑

⟨fσ†ckσ⟩. (44)

Using the relation

g
∑

fσ
†fσ′ck′σ′

†ckσ

= g
∑

fσ
†fσ′

(

−ckσck′σ′
† + δkk′δσσ′

)

= −g
∑

fσ
†ckσ ck′σ′

†fσ′ +Ng
∑

fσ
†fσ

= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩+ ⟨fσ†ckσ⟩

)

×
(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩+ ⟨ck′σ′
†fσ′⟩

)

+Ng

5 The second term in the right-hand side in Eq. (43) does not
include the flipping of the isospin of the valence nucleon, and
hence could be neglected for the Kondo effect [41]. However,
we keep this term throughout the analysis, because the present
discussion is devoted to comparison of the result in the mean-field
approximation with the exact solution.

Step 1. Introduce auxiliary fermion fields fσ (SU(2))	


auxiliary fermion # constraint	


fermion # 0, 2 

fermion # 1 
physical space 
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= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)
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= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)
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= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)

N↑	
N↑	
 D↑	
 N↓	
N↓	
 D↓	


N↑	


N↑	


D↑	


N↓	


N↓	


D↓	


Diagonalization 
(next page)	


Matrix	
 Basis	


ε	


k = 1	
 2	
 3	
 N	

Step 3	


Attraction by  
N-D mixing (Δ) 

↓ 
New ground state 

S.Y., Phys. Rev. C93, 065204 (2016)	
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}
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= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)

Diagonalized matrix	


d1σ =
1√
2
(c1σ − c2σ)

d2σ =
1√
2
(c1σ − c3σ)

...

dN−1σ =
1√
2
(c1σ − cNσ)

dNσ =
1√
2N

√

1− ϵ− λ

D
(c1σ + . . .+ cNσ)−

1√
2

√

1 +
ϵ− λ

D
fσ

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + . . .+ cNσ) +

1√
2

√

1− ϵ− λ

D
fσ

H=
∑

ϵkckσ
†ckσ+g

(∑
fσ

†fσ′ck′σ′
†ckσ−

1

2

∑
ck′σ

†ckσ

)
+λ

(∑
fσ

†fσ−1
)

H = HMF +Hfluc

HMF =
∑

ϵkckσ
†ckσ +

∑(
∆∗fσ

†ckσ +∆ckσ
†fσ

)
+ λ

∑
fσ

†fσ +
|∆|2

g
− λ

Hfluc=−g
∑(

fσ
†ckσ−⟨fσ†ckσ⟩

)(
ck′σ′

†fσ′−⟨ck′σ′
†fσ′⟩

)
− 1

2
g
∑

ck′σ
†ckσ +Ng

H = H0 +HK

H0 =
∑

ϵkckσ
†ckσ

HK=g
∑(

ck′↓
†ck↑ T++ck′↑

†ck↓ T−+(ck′↑
†ck↑−ck′↓

†ck↓)T3

)

1

8

+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}

New basis	

lowest energy (↑)	
 lowest energy (↓)	


ε	


k = 1	
 2	
 3	
 N	

Step 3	
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= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)

Linear combination of 
(coherent) nucleon and D meson	
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}

S.Y., Phys. Rev. C93, 065204 (2016)	
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}

7

= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)

Diagonalized matrix	
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}

Variation by	


lowest energy (↓)	
lowest energy (↑)	


ε	


k = 1	
 2	
 3	
 N	

Step 3	


Step 4	
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}

“Kondo bound state” 
Binding energy (MF): Ng 

different form exact solution 3Ng/2?	
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= −g
∑

(

fσ
†ckσ − ⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′ − ⟨ck′σ′

†fσ′⟩
)

−g
∑

(

⟨fσ†ckσ⟩ck′σ′
†fσ′ + ⟨ck′σ′

†fσ′⟩fσ†ckσ
)

+g
∑

⟨fσ†ckσ⟩⟨ck′σ′
†fσ′⟩+Ng, (45)

where the constraint condition (41) is used again, we sep-
arate the Hamiltonian (1) into the mean-field part HMF

and the fluctuation part Hfluc as

H = HMF +Hfluc, (46)

with

HMF =
∑

ϵkckσ
†ckσ +

∑

(

∆∗fσ
†ckσ +∆ckσ

†fσ
)

+λ
∑

fσ
†fσ +

|∆|2

g
− λ, (47)

and

Hfluc=−g
∑

(

fσ
†ckσ−⟨fσ†ckσ⟩

)

(

ck′σ′
†fσ′−⟨ck′σ′

†fσ′⟩
)

−
1

2
g
∑

ck′σ
†ckσ +Ng. (48)

In the man-field approximation, we consider only the
mean-field part HMF and neglect the fluctuation part
Hfluc [39–41]. We diagonalize HMF and introduce the
Slater determinant by single-particle states. Then, we
perform the variation for the expectation value ⟨HMF⟩
with respect to λ and ∆ as

∂

∂λ
⟨HMF⟩ = 0, (49)

∂

∂∆
⟨HMF⟩ = 0, (50)

and finally obtain λ and ∆. The ground-state energy is
given by substituting the λ and ∆ into ⟨HMF⟩.
In the following, to demonstrate the mean-field calcu-

lation explicitly, we consider the simple case of ϵk = ϵ

for all k = 1, . . . , N , because the diagonalization of HMF

can be analytically performed. Such simplification does
not change the essence of the discussion. With the basis
{ckσ, fσ} (k = 1, . . . , N , σ =↑, ↓), we give the mean-field
Hamiltonian HMF in terms of the 2(N + 1) × 2(N + 1)
matrix Hcf ,

Hcf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ 0 · · · ∆∗

0 0 · · · 0 0 ϵ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (51)

as

HMF = ψ†Hcfψ +
|∆|2

g
− λ, (52)

with defining

ψ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1↑
...

cN↑

f↑
c1↓
...

cN↓

f↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (53)

for short notation. It is worth to note that g > 0 should
be maintained, because the stability of the ground state
is guaranteed by the positivity of |∆|2/g in HMF. Then,
we diagonalize Hcf analytically as

Hdiag
cf = diag

(

ϵ, . . . , ϵ,
1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D), ϵ, . . . , ϵ,

1

2
(ϵ+ λ−D),

1

2
(ϵ+ λ+D)

)

= diag (E1, . . . , EN−1, EN , EN+1, E1, . . . , EN−1, EN , EN+1) , (54)

with

D =
√

(ϵ− λ)2 + 4N |∆|2. (55)

Introducing the new fields {dkσ} (k = 1, . . . , N)

d1σ =
1√
2
(c1σ − c2σ) , (56)

d2σ =
1√
2
(c1σ − c3σ) , (57)

...

dN−1σ =
1√
2
(c1σ − cNσ) , (58)

dNσ =
1√
2N

√

1−
ϵ− λ

D
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵ− λ

D
fσ, (59)

dN+1σ =
1√
2N

√

1 +
ϵ− λ

D
(c1σ + · · ·+ cNσ)

S.Y., Phys. Rev. C93, 065204 (2016)	




3. Kondo effect in atomic nuclei	

What’s about more general cases?	


Mean-field (+RPA) approach	

Simple case: εk=ε	


① Mean-value of auxiliary fermion number is one.	
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+
1√
2

√

1−
ϵ− λ

D
fσ, (60)

we represent the mean-field Hamiltonian HMF by

HMF = φ†Hdiag
cf φ+

|∆|2

g
− λ

=
∑

Ekdkσ
†dkσ +

|∆|2

g
− λ, (61)

with defining

φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1↑
...

dN↑

dN+1↑

d1↓
...

dN↓

dN+1↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (62)

We remark that the isospin components ↑ and ↓ for the
valence nucleons are separated in the matrixHcf , and the
mixing part in the off-diagonal components is absorbed
into the fluctuation part Hfluc. This separation indeed
enables us to introduce the mean field for the valence
nucleons.
Now let us consider the variation of ⟨HMF⟩ with re-

spect to λ and ∆. As a simple case, we consider the
system with one valence nucleon. The extension to n va-
lence nucleons is straightforward as discussed later. In
the present case, we have two degrees of freedom; an im-
purity and a valence nucleon. To describe this system by
the fields dN↑ and dN↓ having the minimum energy EN ,
we consider the ground state

|ψ0⟩ = dN↑
†dN↓

†|0⟩, (63)

as the most stable state. Performing the variation for

EMF(λ,∆) = ⟨ψ0|HMF|ψ0⟩

= 2EN +
|∆|2

g
− λ (64)

with respect to λ and ∆,

∂

∂λ
EMF = 0,

∂

∂∆
EMF = 0, (65)

we obtain the values of λ and ∆

λ = ϵ, ∆ =
√
Ng. (66)

The ground-state energy for the mean-field Hamiltonian
HMF is

EMF(ϵ,
√
Ng) = ϵ−Ng. (67)

Because we need to consider the energy shift
⟨ψ0|Hfluc|ψ0⟩ = 0 by the fluctuation part Hfluc, we finally

obtain the ground-state energy for the original Hamilto-
nian (1)

EMF+shift = ⟨ψ0|HMF|ψ0⟩+ ⟨ψ0|Hfluc|ψ0⟩
= EMF(ϵ,

√
Ng) + 0

= ϵ−Ng, (68)

in the mean-field approximation. The binding energy
−Ng is different by about 33% in contrast to the exact
value Eexact = ϵ− 3Ng/2 in Section II B. This difference
originates from the limit of the mean-field approximation.
We expect that the correction by the fluctuation, which
is not included in the mean-field approximation, enables
us to get the value close to the exact one. In the next
subsection, we will discuss the energy correction by RPA.
We furthermore discuss the result when the fluctuation
is completely included in Appendix A.
We leave a comment on the obtained wave function

|ψ0⟩. Representing |ψ0⟩ by the original fields {ckσ, fσ},
we find that |ψ0⟩ is a superposition of multiple number
of impurities, i.e.

∑

fσ
†fσ = 0, 1, 2. However, we should

remind us that only one impurity is allowed to exist due
to the condition (41). In fact, we confirm this is satisfied
as average by

⟨ψ0|
∑

fσ
†fσ|ψ0⟩ = 1, (69)

in the present mean-field approximation [39–41]. We also
note that the ground state |ψ0⟩ is a state superposed co-
herently by many states of valence nucleon k = 1, . . . , N .
We also leave a comment about the gap function (44).

In the mean-field approximation, we introduced the new
fields {dkσ} and considered the single-particle state for
them. In this basis, the gap function gives the strength
of the binding energy in the system. On the other hand,
in the original fields {ckσ, fσ}, the gap function gives the
strength of the state mixing between the valence nucleon
(ckσ) and the impurity (fσ) as seen in the matrix (51)
(see also Refs. [39–41]). Although, the gap function gives
the different physical meaning (the binding energy or the
strength of the state mixing) according to the difference
of the basis fields, they give essentially the same result.

2. Fluctuation effect —RPA—

The mean-field approximation does not include the
fluctuation effect. In this subsection, we investigate
the fluctuation effect based on RPA [42, 46] (see also
Refs. [47, 48] for application to the Hartree-Fock states
and the BCS states in atomic nuclei). We rewrite the
Hamiltonian (1) in terms of {dkσ} instead of {ckσ, fσ} as

H =

(

ϵ−
3

4
Ng

)

×
{

(a0↑
†a0↑ + a0↓

†a0↓) + (a1↑
†a1↑ + a1↓

†a1↓)
}

+
1

4
Ng

{

(a0↑
†a1↑ + a0↓

†a1↓) + (a1↑
†a0↑ + a1↓

†a0↓)
}

ε	


k = 1	
 2	
 3	
 N	


② Fluctuation effect (random-phase approximation; RPA)	
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+
1

2
Ng

(

a0↑
†a0↓

† − a1↑
†a1↓

†) (a0↑a0↓ − a1↑a1↓)

+(−1)Ng
(

a0↑
†a1↑

†a0↑a1↑ + a0↓
†a1↓

†a0↓a1↓
)

+

(

−
1

2

)

Ng
(

a0↑
†a1↓

† + a0↓
†a1↑

†) (a0↑a1↓ + a0↓a1↑)

+ (−ϵ+Ng)

+
N−1
∑

k=1

Ekdkσ
†dkσ, (70)

where we define a0σ = dNσ and a1σ = dN+1σ for short
notation. Now we consider the RPA correlation energy
by using the ground state |ψ0⟩ = a0↑†a0↓†|0⟩ in the mean-
field approximation.
First of all, we calculate energy eigenvalues of the RPA

modes. W consider the fluctuation near the ground state
|ψ0⟩ = a0↑†a0↓†|0⟩. We solve the RPA equation

(

A B

−B∗ −A∗

)(

X

Y

)

= Ων

(

X

Y

)

, (71)

with

Aµνρσ = ⟨ψ0|
[

a0ν
†a1µ,

[

H, a1ρ
†a0σ

]]

|ψ0⟩,

=
1

2
Ngδµρδνσ

+Ng (δµ↑δν↓δρ↑δσ↓ + δµ↓δν↑δρ↓δσ↑)

+
1

2
Ng (δµ↑δν↑ − δµ↓δν↓) (δρ↑δσ↑ − δρ↓δσ↓) , (72)

and

−Bµνρσ = ⟨ψ0|
[

a0ν
†a1µ,

[

H, a0σ
†a1ρ

]]

|ψ0⟩

=
1

2
Ng (δµ↑δρ↓ − δµ↓δρ↑) (δν↑δσ↓ − δν↓δσ↑) ,(73)

and obtain the RPA energy eigenvalues

{Ων} = {Ω±1,Ω±2,Ω±3,Ω0}

=
{

±
√
2Ng,±

√
2Ng,±

√
2Ng, 0

}

. (74)

The zero-energy mode with Ω0 = 0 is due to the energy
degeneracy of the first term in the Hamiltonian (70) for
|ψ0⟩ = a0↑†a0↓†|0⟩ and |ψ1⟩ = a1↑†a1↓†|0⟩. This degener-
acy is special in the mean-field approximation, and hence
should be regarded as the spurious one. Indeed, we will
see such degeneracy will be resolved when higher order
fluctuations are included in Appendix. A.
From the above result, we obtain the RPA correlation

energy [42, 46–48]

∆ERPA =
1

2

∑

ν>0

Ων −
1

2
TrA

=
1

2
(3
√
2− 5)Ng

≃ −0.378Ng, (75)

as the energy difference between the mean-field state and
the fluctuating state. Thus, the RPA correlation energy

gives the correction to the ground-state energy in the
mean-field approximation. Therefore, the ground-state
energy in the mean-field approximation and the RPA is

EMF+shift+RPA = EMF+shift +∆ERPA

= ϵ−
1

2
(7 − 3

√
2)Ng

≃ ϵ− 1.378Ng. (76)

This is the result for one valence nucleon. For n valence
nucleons (n ≤ 2N), one nucleon participates in the bind-
ing as described above and the left n−1 valence nucleons
does not (see Eq. (54)). Therefore, the energy becomes

EMF+shift+RPA(n) ≃ n ϵ− 1.378Ng. (77)

The binding energy −1.378Ng is about 92% of the exact
solution −3Ng/2 in Section II B. Thus, by including the
fluctuation in the RPA, we get the energy close to the
exact one. We expect that more closer value can be ob-
tained when higher order fluctuations are taken into ac-
count. In fact, we can diagonalize completely the Hamil-
tonian (70), due to its simplicity, and obtain the ground-
state energy which is precisely the same as the exact one
as presented in Appendix A.

3. Correspondence between exact solution and
mean-field+RPA solution

Let us see the correspondence between the mean-
field+RPA solution and the exact solution (Tables I, II,
III; g > 0). Concerning the ground state, we find that the
former reproduces the latter within the approximation.
We consider the n = 1 case. For N single-particle

states of valence nucleon, we have one single-particle
state which is coupled to impurity (coupling orbital) and
N − 1 single-particle states which are not coupled (non-
coupling orbital). In the ground state, one valence nu-
cleon occupies the coupling orbital, and forms the isos-
inglet state as combined to the impurity isospin as the
most stable state. Therefore, the number of degeneracy
factor is one. This corresponds to the ground state of
I = 0, 1 with energy ϵ − 3Ng/2 in Table I.
We consider the n = 2 case. In this case, one of the two

valence nucleons occupies the coupling orbital, and forms
the isosinglet state combined with the impurity isospin.
The left valence nucleon occupies one of the N − 1 non-
coupling orbitals. Because the fist valence nucleon forms
the isosinglet state with the impurity, the addition of
the second valence nucleon gives isodoublet state. The
number of degeneracy factor is N−1. This is the same as
the number of degeneracy factor in the I = 1/2 ground
state with energy 2ϵ− 3Ng/2 in Table II.
We consider the n = 3 case. In this case, one valence

nucleon occupies the coupling orbital and forms the isos-
inglet state combined with the impurity isospin. The
other two valence nucleons occupy one or two of the N−1
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|ψ0⟩ = a0↑†a0↓†|0⟩. We solve the RPA equation

(

A B

−B∗ −A∗

)(

X

Y

)

= Ων

(

X

Y

)

, (71)

with

Aµνρσ = ⟨ψ0|
[

a0ν
†a1µ,

[

H, a1ρ
†a0σ

]]

|ψ0⟩,

=
1

2
Ngδµρδνσ

+Ng (δµ↑δν↓δρ↑δσ↓ + δµ↓δν↑δρ↓δσ↑)

+
1

2
Ng (δµ↑δν↑ − δµ↓δν↓) (δρ↑δσ↑ − δρ↓δσ↓) , (72)

and

−Bµνρσ = ⟨ψ0|
[

a0ν
†a1µ,

[

H, a0σ
†a1ρ

]]

|ψ0⟩

=
1

2
Ng (δµ↑δρ↓ − δµ↓δρ↑) (δν↑δσ↓ − δν↓δσ↑) ,(73)

and obtain the RPA energy eigenvalues

{Ων} = {Ω±1,Ω±2,Ω±3,Ω0}

=
{

±
√
2Ng,±

√
2Ng,±

√
2Ng, 0

}

. (74)
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|ψ0⟩ = a0↑†a0↓†|0⟩ and |ψ1⟩ = a1↑†a1↓†|0⟩. This degener-
acy is special in the mean-field approximation, and hence
should be regarded as the spurious one. Indeed, we will
see such degeneracy will be resolved when higher order
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From the above result, we obtain the RPA correlation

energy [42, 46–48]
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as the energy difference between the mean-field state and
the fluctuating state. Thus, the RPA correlation energy

gives the correction to the ground-state energy in the
mean-field approximation. Therefore, the ground-state
energy in the mean-field approximation and the RPA is

EMF+shift+RPA = EMF+shift +∆ERPA

= ϵ−
1

2
(7 − 3

√
2)Ng
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This is the result for one valence nucleon. For n valence
nucleons (n ≤ 2N), one nucleon participates in the bind-
ing as described above and the left n−1 valence nucleons
does not (see Eq. (54)). Therefore, the energy becomes

EMF+shift+RPA(n) ≃ n ϵ− 1.378Ng. (77)
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fluctuation in the RPA, we get the energy close to the
exact one. We expect that more closer value can be ob-
tained when higher order fluctuations are taken into ac-
count. In fact, we can diagonalize completely the Hamil-
tonian (70), due to its simplicity, and obtain the ground-
state energy which is precisely the same as the exact one
as presented in Appendix A.

3. Correspondence between exact solution and
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Let us see the correspondence between the mean-
field+RPA solution and the exact solution (Tables I, II,
III; g > 0). Concerning the ground state, we find that the
former reproduces the latter within the approximation.
We consider the n = 1 case. For N single-particle

states of valence nucleon, we have one single-particle
state which is coupled to impurity (coupling orbital) and
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cleon occupies the coupling orbital, and forms the isos-
inglet state as combined to the impurity isospin as the
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factor is one. This corresponds to the ground state of
I = 0, 1 with energy ϵ − 3Ng/2 in Table I.
We consider the n = 2 case. In this case, one of the two

valence nucleons occupies the coupling orbital, and forms
the isosinglet state combined with the impurity isospin.
The left valence nucleon occupies one of the N − 1 non-
coupling orbitals. Because the fist valence nucleon forms
the isosinglet state with the impurity, the addition of
the second valence nucleon gives isodoublet state. The
number of degeneracy factor is N−1. This is the same as
the number of degeneracy factor in the I = 1/2 ground
state with energy 2ϵ− 3Ng/2 in Table II.
We consider the n = 3 case. In this case, one valence

nucleon occupies the coupling orbital and forms the isos-
inglet state combined with the impurity isospin. The
other two valence nucleons occupy one or two of the N−1
non-coupling orbitals, and form the isosinglet or isotriplet
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This is the result for one valence nucleon. For n valence
nucleons (n ≤ 2N), one nucleon participates in the bind-
ing as described above and the left n−1 valence nucleons
does not (see Eq. (54)). Therefore, the energy becomes

EMF+shift+RPA(n) ≃ n ϵ− 1.378Ng. (77)

The binding energy −1.378Ng is about 92% of the exact
solution −3Ng/2 in Section II B. Thus, by including the
fluctuation in the RPA, we get the energy close to the
exact one. We expect that more closer value can be ob-
tained when higher order fluctuations are taken into ac-
count. In fact, we can diagonalize completely the Hamil-
tonian (70), due to its simplicity, and obtain the ground-
state energy which is precisely the same as the exact one
as presented in Appendix A.

3. Correspondence between exact solution and
mean-field+RPA solution

Let us see the correspondence between the mean-
field+RPA solution and the exact solution (Tables I, II,
III; g > 0). Concerning the ground state, we find that the
former reproduces the latter within the approximation.
We consider the n = 1 case. For N single-particle

states of valence nucleon, we have one single-particle
state which is coupled to impurity (coupling orbital) and
N − 1 single-particle states which are not coupled (non-
coupling orbital). In the ground state, one valence nu-
cleon occupies the coupling orbital, and forms the isos-
inglet state as combined to the impurity isospin as the
most stable state. Therefore, the number of degeneracy
factor is one. This corresponds to the ground state of
I = 0, 1 with energy ϵ − 3Ng/2 in Table I.
We consider the n = 2 case. In this case, one of the two

valence nucleons occupies the coupling orbital, and forms
the isosinglet state combined with the impurity isospin.
The left valence nucleon occupies one of the N − 1 non-
coupling orbitals. Because the fist valence nucleon forms
the isosinglet state with the impurity, the addition of
the second valence nucleon gives isodoublet state. The
number of degeneracy factor is N−1. This is the same as
the number of degeneracy factor in the I = 1/2 ground
state with energy 2ϵ− 3Ng/2 in Table II.
We consider the n = 3 case. In this case, one valence

nucleon occupies the coupling orbital and forms the isos-
inglet state combined with the impurity isospin. The
other two valence nucleons occupy one or two of the N−1
non-coupling orbitals, and form the isosinglet or isotriplet
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Ων −
1

2
TrA

=
1

2
(3
√
2− 5)Ng

≃ −0.378Ng, (75)

as the energy difference between the mean-field state and
the fluctuating state. Thus, the RPA correlation energy

gives the correction to the ground-state energy in the
mean-field approximation. Therefore, the ground-state
energy in the mean-field approximation and the RPA is

EMF+shift+RPA = EMF+shift +∆ERPA

= ϵ−
1

2
(7 − 3

√
2)Ng

≃ ϵ− 1.378Ng. (76)

This is the result for one valence nucleon. For n valence
nucleons (n ≤ 2N), one nucleon participates in the bind-
ing as described above and the left n−1 valence nucleons
does not (see Eq. (54)). Therefore, the energy becomes

EMF+shift+RPA(n) ≃ n ϵ− 1.378Ng. (77)

The binding energy −1.378Ng is about 92% of the exact
solution −3Ng/2 in Section II B. Thus, by including the
fluctuation in the RPA, we get the energy close to the
exact one. We expect that more closer value can be ob-
tained when higher order fluctuations are taken into ac-
count. In fact, we can diagonalize completely the Hamil-
tonian (70), due to its simplicity, and obtain the ground-
state energy which is precisely the same as the exact one
as presented in Appendix A.

3. Correspondence between exact solution and
mean-field+RPA solution

Let us see the correspondence between the mean-
field+RPA solution and the exact solution (Tables I, II,
III; g > 0). Concerning the ground state, we find that the
former reproduces the latter within the approximation.
We consider the n = 1 case. For N single-particle

states of valence nucleon, we have one single-particle
state which is coupled to impurity (coupling orbital) and
N − 1 single-particle states which are not coupled (non-
coupling orbital). In the ground state, one valence nu-
cleon occupies the coupling orbital, and forms the isos-
inglet state as combined to the impurity isospin as the
most stable state. Therefore, the number of degeneracy
factor is one. This corresponds to the ground state of
I = 0, 1 with energy ϵ − 3Ng/2 in Table I.
We consider the n = 2 case. In this case, one of the two

valence nucleons occupies the coupling orbital, and forms
the isosinglet state combined with the impurity isospin.
The left valence nucleon occupies one of the N − 1 non-
coupling orbitals. Because the fist valence nucleon forms
the isosinglet state with the impurity, the addition of
the second valence nucleon gives isodoublet state. The
number of degeneracy factor is N−1. This is the same as
the number of degeneracy factor in the I = 1/2 ground
state with energy 2ϵ− 3Ng/2 in Table II.
We consider the n = 3 case. In this case, one valence

nucleon occupies the coupling orbital and forms the isos-
inglet state combined with the impurity isospin. The
other two valence nucleons occupy one or two of the N−1
non-coupling orbitals, and form the isosinglet or isotriplet

Binding energy (MF+RPA):  1.378Ng 
close to exact solution 3Ng/2=1.5Ng!!	


zero-point energy in H.O. potential	
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Mean-field (+RPA) approach	
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③ Violation of isospin symmetry (application)	
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IV. DISCUSSION: COMPETITION BETWEEN
KONDO EFFECT AND NUCLEON

CORRELATIONS

So far, we have discussed the correlation between an
impurity and a valence nucleon as the Kondo effect, and
assumed no correlation between valence nucleons. In re-
alistic nuclei, however, there are several correlations in
valence nucleons which are not necessarily negligible. In
this section, we briefly consider two types of correlation
in valence nucleons, the isospin symmetry breaking and
the nucleon pairings, and discuss how the Kondo effect
is affected by them (see for example Ref. [52] as a review
in the condensed matter systems).

A. Competition between Kondo effect and isospin
breaking

We consider the isospin symmetry breaking in the va-
lence nucleons. We set the valence nucleon energies ϵ↑
and ϵ↓ for ↑ and ↓ components of isospin, respectively,

and modify the kinetic term of the valence nucleon (2),

H0 → H0 =
∑

ϵkσckσ
†ckσ, (111)

to include the isospin breaking in the single-particle
states. In the following, we set ϵkσ = ϵσ for simplic-
ity. The calculation procedure in the mean-field ap-
proximation is essentially the same as discussed in Sec-
tion III B. We introduce the isospin breaking in the mean-
field Hamiltonian Eq. (61). Instead of the matrix (54),
we define the generalized matrix with 2(N+1)×2(N+1)
dimensions

H̃cf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ↑ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ↑ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ↓ 0 · · · ∆∗

0 0 · · · 0 0 ϵ↓ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (112)

and perform the diagonalization as

H̃diag
cf = diag

(

ϵ↑, . . . , ϵ↑,
1

2
(ϵ↑ + λ−D↑),

1

2
(ϵ↑ + λ+D↑), ϵ↓, . . . , ϵ↓,

1

2
(ϵ↓ + λ−D↓),

1

2
(ϵ↓ + λ+D↓)

)

= diag (E1↑, . . . , EN−1↑, EN↑, EN+1↑, E1↓, . . . , EN−1↓, EN↓, EN+1↓) , (113)

with

Dσ =
√

(ϵσ − λ)2 + 4N |∆|2, (114)

for σ =↑, ↓. Instead of the original fields {ckσ, fσ}, we
define the new fields

d̃1σ =
1√
2
(c1σ − c2σ) ,

d̃2σ =
1√
2
(c1σ − c3σ) ,

...

d̃N−1σ =
1√
2
(c1σ − cNσ) ,

d̃Nσ =
1√
2N

√

1−
ϵσ − λ

Dσ
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵσ − λ

Dσ
fσ,

d̃N+1σ =
1√
2N

√

1−
ϵσ − λ

Dσ
(c1σ + · · ·+ cNσ)

+
1√
2

√

1 +
ϵσ − λ

Dσ
fσ,

and rewrite the mean-field Hamiltonian (61) as

H̃MF = φ†H̃diag
cf φ+

|∆|2

g
− λ

=
∑

Ekσ d̃
†

kσ d̃kσ +
|∆|2

g
− λ, (115)

with φ in Eq. (62). Supposing the energy of ↓ component
is larger than that of ↑ component, we parametrize ϵ↑ and
ϵ↓ by ϵ↑ = ϵ and ϵ↓ = ϵ+ δϵ with δϵ > 0.
For the system composed of one valence nucleon and

an impurity, we consider the ground state given by

|ψ̃0⟩ = d̃ †
N↑d̃

†
N↓|0⟩. (116)

For the ground-state energy,

ẼMF = ⟨ψ̃0|H̃MF|ψ̃0⟩

= EN↑ + EN↓ +
|∆|2

g
− λ, (117)

we perform the variation with respect to λ and ∆,

∂

∂λ
ẼMF = 0,

∂

∂∆
ẼMF = 0, (118)

and obtain λ and ∆ as

λ = ϵ+
1

2
δϵ, ∆ =

√
Ng

√

1−
(δϵ)2

16N2g2
. (119)

13

IV. DISCUSSION: COMPETITION BETWEEN
KONDO EFFECT AND NUCLEON

CORRELATIONS

So far, we have discussed the correlation between an
impurity and a valence nucleon as the Kondo effect, and
assumed no correlation between valence nucleons. In re-
alistic nuclei, however, there are several correlations in
valence nucleons which are not necessarily negligible. In
this section, we briefly consider two types of correlation
in valence nucleons, the isospin symmetry breaking and
the nucleon pairings, and discuss how the Kondo effect
is affected by them (see for example Ref. [52] as a review
in the condensed matter systems).

A. Competition between Kondo effect and isospin
breaking

We consider the isospin symmetry breaking in the va-
lence nucleons. We set the valence nucleon energies ϵ↑
and ϵ↓ for ↑ and ↓ components of isospin, respectively,

and modify the kinetic term of the valence nucleon (2),

H0 → H0 =
∑

ϵkσckσ
†ckσ, (111)

to include the isospin breaking in the single-particle
states. In the following, we set ϵkσ = ϵσ for simplic-
ity. The calculation procedure in the mean-field ap-
proximation is essentially the same as discussed in Sec-
tion III B. We introduce the isospin breaking in the mean-
field Hamiltonian Eq. (61). Instead of the matrix (54),
we define the generalized matrix with 2(N+1)×2(N+1)
dimensions

H̃cf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϵ↑ 0 · · · ∆∗ 0 0 · · · 0

0 ϵ↑ · · · ∆∗ 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

∆ ∆ · · · λ 0 0 · · · 0

0 0 · · · 0 ϵ↓ 0 · · · ∆∗

0 0 · · · 0 0 ϵ↓ · · · ∆∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 ∆ ∆ · · · λ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (112)

and perform the diagonalization as

H̃diag
cf = diag

(

ϵ↑, . . . , ϵ↑,
1

2
(ϵ↑ + λ−D↑),

1

2
(ϵ↑ + λ+D↑), ϵ↓, . . . , ϵ↓,

1

2
(ϵ↓ + λ−D↓),

1

2
(ϵ↓ + λ+D↓)

)

= diag (E1↑, . . . , EN−1↑, EN↑, EN+1↑, E1↓, . . . , EN−1↓, EN↓, EN+1↓) , (113)

with

Dσ =
√

(ϵσ − λ)2 + 4N |∆|2, (114)

for σ =↑, ↓. Instead of the original fields {ckσ, fσ}, we
define the new fields

d̃1σ =
1√
2
(c1σ − c2σ) ,

d̃2σ =
1√
2
(c1σ − c3σ) ,

...

d̃N−1σ =
1√
2
(c1σ − cNσ) ,

d̃Nσ =
1√
2N

√

1−
ϵσ − λ

Dσ
(c1σ + · · ·+ cNσ)

−
1√
2

√

1 +
ϵσ − λ

Dσ
fσ,

d̃N+1σ =
1√
2N

√

1−
ϵσ − λ

Dσ
(c1σ + · · ·+ cNσ)

+
1√
2

√

1 +
ϵσ − λ

Dσ
fσ,

and rewrite the mean-field Hamiltonian (61) as

H̃MF = φ†H̃diag
cf φ+

|∆|2

g
− λ

=
∑

Ekσ d̃
†
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an impurity, we consider the ground state given by

|ψ̃0⟩ = d̃ †
N↑d̃

†
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For the ground-state energy,

ẼMF = ⟨ψ̃0|H̃MF|ψ̃0⟩

= EN↑ + EN↓ +
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we perform the variation with respect to λ and ∆,

∂
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ẼMF = 0,

∂
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√
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√
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Then, the ground-state energy is given as

ẼMF

(

ϵ+
1

2
δϵ,

√
Ng

√

1−
(δϵ)2

16N2g2

)

= ϵ−Ng +
1

2
δϵ−

(δϵ)2

16Ng
. (120)

We note that the ground-state energy increases for non-
zero δϵ with 0 < δϵ ≤ 4Ng. At the special value δϵ =
4Ng, we get ẼMF = ϵ and find no bound state. According
to the change of the ground-state energy by δϵ, we find
that the strength of the gap function |∆| in Eq. (119)
decreases and finally it becomes |∆| = 0 at δϵ = 4Ng
where the bound state disappears.

For δϵ > 4Ng, on the other hand, the ground state
is the isosinglet or isotriplet state given by d̃ †

kσ (k = 1,

. . . , N − 1) and d̃ †
Nσ′ with the number of degeneracy

factor N − 1. The ground-state energy is ẼMF = ϵ with
λ = ϵ − Ng and ∆ = 0. The solution for δϵ ≤ 4Ng is
connected continuously to the solution for δϵ > 4Ng.

B. Competition between Kondo effect and pairing
of valence nucleons

We consider the pairing interaction in valence nucle-
ons, and discuss the competition between the Kondo ef-
fect and the pairing effect. We consider two types of the
pairing interaction: the isovector-type (I = 1) pairing
and the isoscalar-type (I = 0) pairing.
We consider the isovector-type pairing interaction

H1
pair=−G1

∑

i,j:odd

{

ci↑
†ci+1↑

†cj+1↑cj↑+
1

2

(

ci↑
†ci+1↓

†+ci↓
†ci+1↑

†) (cj+1↑cj↓+cj+1↓cj↑)+ci↓
†ci+1↓

†cj+1↓cj↓

}

, (121)

with the coupling constant G1 > 0, where we give the
pairing between the ith and i+1th single-particle states
with i, j being odd numbers, as the simple pairing model.
Because of the commutation relation

[

H1
pair, HK

]

̸= 0, (122)

for the Kondo interaction HK (Eq. (3)), we find that the
bound state by the Kondo interaction is affected by the
isovector-type pairing.
The situation is different for the isoscalar-type pairing.

We consider the isoscalar-type pairing interaction

H0
pair =

G0

2

∑

i,j:odd

(

ci↑
†ci+1↓

† − ci↓
†ci+1↑

†)

× (cj+1↑cj↓ − cj+1↓cj↑) , (123)

with the coupling constant G0/2 > 0, where we give the
pairing again for the ith and i+1th single-particle states
with i, j being odd numbers. In this case, the commuta-
tion relation with the Kondo interaction HK (Eq. (3)) is
given by

[

H0
pair, HK

]

= 0. (124)

Therefore, we find that the bound state by the Kondo
interaction is not suffered from the isoscalar-type pairing.
Let us consider the eigenstates of the Hamiltonian

H0 +HK + H0,1
pair. We represent |ψK⟩ for the eigenstate

of the Hamiltonian H0 + HK (Eq. (1)) and |ψ1
pair⟩ for

the eigenstate of H0 + H1
pair. We consider the case of

ϵk = ϵ in Eq. (2). Because H0, H1
pair and HK are non-

commutative for each other (cf. Eq. (122)), the eigenstate
for H0+HK+H1

pair including both the Kondo effect and

the isovector-type pairing is given by the sum of the ten-
sor product of several states:

∑

i,j γij |ψK i⟩⊗|ψ1
pair j⟩ with

|ψK i⟩ and |ψ1
pair j⟩ being the ith and jth states of |ψK⟩

and |ψ1
pair⟩, respectively, and γij being appropriate coef-

ficients. Therefore, |ψK⟩ and |ψ1
pair⟩ are entangled by the

Hamiltonian H0+HK+H1
pair. On the other hand, in the

case of the isoscalar-type pairing, because H0, H1
pair and

HK are commutative (cf. Eq. (124)), the eigenstate of the
Hamiltonian H0+HK+H0

pair is given by a simple tensor
product: |ψK⟩⊗ |ψ0

pair⟩, where |ψ0
pair⟩ is the eigenstate of

H0 +H1
pair. Therefore, |ψK⟩ and |ψ0

pair⟩ are disentangled
by the Hamiltonian H0 +HK +H0

pair.

We leave a comment for the case that the interac-
tion between an impurity and a valence nucleon has
no isospin-exchange, in contrast to the Kondo interac-
tion (3). For the interaction with no isospin-exchange
HNK = g′

∑

ciσ†cjσ with the coupling constant g′, we
find that the commutations with the pairing interactions
are given by

[

H1
pair, HNK

]

̸= 0 and
[

H0
pair, HNK

]

̸= 0.
Therefore, the eigenstate of H0+HNK, |ψNK⟩, is affected
both by the isoscalar-type pairing and by the isovector-
type pairing, and hence |ψNK⟩ becomes entangled with
|ψ0,1

pair⟩ by the Hamiltonian H0 +HNK +H0,1
pair.

The above properties of the entanglement are obtained
as the exact solutions of the Hamiltonians. Because they
should be maintained also for the approximate solutions
in the mean-field approach, it gives us a guidance to check
the validity of the mean-field approximation. Further
detailed analysis will be left for future studies.

ε↑=ε, ε↓=ε+δε	

Δ=0 at δε     =4Ng	


EMF=ε at δε=4Ng	
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δε	

4Ng	
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