# Kondo effect for charm hadrons in nuclear matter

arXiv:1607.07948 [hep-ph] (accepted in PRC)

#### Shigehiro YASUI

Tokyo Institute of Technology

in collaboration with K. Sudoh

- 1. Charm nucleus and Kodo effect
- 2. Kondo effect for  $D_s^-$  and  $D_s^{*-}$  meson
- 3. Kondo effect in atomic nucleus S.Y., Phys. Rev. C93, 065204 (2016)
- 4. Conclusion

International Workshop on Strangeness Nuclear Physics 2017@大阪電通大 12-14 Mar. 2017

# Kondo effect for charm hadrons in nuclear matter

arXiv:1607.07948 [hep-ph] -(accepted in PRC)

### Shigehiro YASUI

Tokyo Institute of Technology

in collaboration with K. Sudoh

1. Charm nucleus and Kodo effect

- 2. Kondo effect for D<sub>s</sub><sup>-</sup> and D<sub>s</sub><sup>\*-</sup> meson
- 3. Kondo effect in atomic nucleus S.Y., Phys. Rev. C93, 065204 (2016)
- 4. Conclusion

International Workshop on Strangeness Nuclear Physics 2017@大阪電通大 12-14 Mar. 2017







- 1. Hadron-nucleon interaction → Flavor symmetry, chiral symmetry, heavy quark symmetry
- 2. Hadron in medium

→ Chiral symmetry breaking, quark confinement

## 3. Nuclear structure

 $\rightarrow$  Spin-isospin correlations, high density state ( $\rho > \rho_0$ )



### 1. Charm nucleus and Kondo effect Review : "Heavy Hadrons in Nuclear Matter" (107 pages)

Heavy Hadrons in Nuclear Matter

Atsushi Hosaka<sup>1,2</sup>, Tetsuo Hyodo<sup>3</sup>, Kazutaka Sudoh<sup>4</sup>, Yasuhiro Yamaguchi<sup>3,5</sup>, and Shigehiro Yasui<sup>\*6</sup>

<sup>1</sup>Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047, Janan

<sup>2</sup>J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, Tokai, Ibaraki, 319-1106, Japan

<sup>3</sup>Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8317, Japan
 <sup>4</sup>Nishogakusha University, 6-16, Sanbancho, Chiyoda, Tokyo, 102-8336, Japan
 <sup>5</sup>Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, via Dodecaneso 33, 16146

<sup>6</sup>Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

#### Abstract

Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia  $(J/\psi, \Upsilon)$ , heavy-light mesons  $(D/\bar{D}, \bar{B}/B)$  and heavy bayrons  $(\Lambda_c, \Lambda_b)$ . The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in nuclear matter with infinite volume, but also in atomic nuclei with finite baryon numbers, to serve future experiments.

#### Contents

| 1        | Intr | roduction                   | <b>2</b> |
|----------|------|-----------------------------|----------|
| <b>2</b> | The  | eoretical basics            | 7        |
|          | 2.1  | Properties of QCD           | 7        |
|          | 2.2  | Symmetries                  | 9        |
|          |      | 2.2.1 Chiral symmetry       | 9        |
|          |      | 2.2.2 Heavy quark symmetry  | 11       |
|          | 2.3  | Hadronic effective theories | 17       |

|   |                  | 2.3.1   | Chiral effective theory                                     | 17 |  |  |  |  |  |
|---|------------------|---------|-------------------------------------------------------------|----|--|--|--|--|--|
|   |                  | 2.3.2   | Heavy hadron effective theory                               | 22 |  |  |  |  |  |
|   | 2.4              | Theore  | etical approaches to finite density                         | 26 |  |  |  |  |  |
|   |                  | 2.4.1   | Few-body systems                                            | 26 |  |  |  |  |  |
|   |                  | 2.4.2   | Treatment of nuclear matter in hadron effective theories    | 31 |  |  |  |  |  |
|   |                  | 2.4.3   | Chiral symmetry at finite density                           | 32 |  |  |  |  |  |
| 3 | Qua              | arkonia | L                                                           | 37 |  |  |  |  |  |
|   | 3.1              | Quark   | onium-nucleon interaction: gluon-exchange dominance         | 37 |  |  |  |  |  |
|   | 3.2              | Few-b   | ody systems                                                 | 39 |  |  |  |  |  |
|   | 3.3              | Nuclea  | ar matter                                                   | 40 |  |  |  |  |  |
| 4 | Hea              | wy-ligi | nt mesons                                                   | 42 |  |  |  |  |  |
|   | 4.1              | Two-b   | ody interaction with nucleon                                | 43 |  |  |  |  |  |
|   | 4.2              | Few-b   | ody systems                                                 | 54 |  |  |  |  |  |
|   | 4.3              | Nuclea  | r matter                                                    | 56 |  |  |  |  |  |
|   | 4.4              | New a   | spects of heavy-light mesons in nuclear matter              | 69 |  |  |  |  |  |
| 5 | Heavy baryons 78 |         |                                                             |    |  |  |  |  |  |
|   | 5.1              | Early   | studies on $\Lambda_c N$ interaction and $\Lambda_c$ nuclei | 78 |  |  |  |  |  |
|   | 5.2              | Recent  | works on $\Lambda_c N$ interaction                          | 79 |  |  |  |  |  |
|   | 5.3              | Few-b   | ody systems                                                 | 81 |  |  |  |  |  |
|   | 5.4              | Nuclea  | r matter                                                    | 82 |  |  |  |  |  |
| 6 | Sun              | nmary   | and future prospects                                        | 83 |  |  |  |  |  |

#### 1 Introduction

It is an important problem to understand hadron properties based on the fundamental theory of the strong interaction, Quantum Chromodynamics (QCD). Due to the non-trivial features of the QCD dynamics at low energies, the hadron physics shows us many interesting and even unexpected non-trivial phenomena. The fact that hadronic phenomena are so rich implies that various studies from many different views are useful and indispensable to reveal the nature of the hadron dynamics. Not only isolated hadrons but also hadronic matter under extreme conditions of high temperature, of high baryon density, and of many different flavors provide important hints to understand the hadron dynamics.

One of familiar forms of hadronic matter is the atomic nucleus, the composite system of protons and neutrons. The nuclear physics has been developed so far, based on various phenomenological approaches (shell models, collective models, and so on). Recently, ab-initio calculations are being realized such that many-body nuclear problems are solved starting from the bare nucleon-nucleon interaction determined phenomenologically with high precision [1–3]. Yet a large step forward has been made; the lattice QCD has derived the nucleon-nucleon interaction [4, 5]. Thus the so far missing path from QCD to nucleus is now being exploited.

Nevertheless, if we look at the problem, for instance, neutron stars, we confront with a difficulty in explaining the so-called twice of the solar mass problem. Because of the high density environment in

# What is **new** property of charm nuclei?

## Heavy mass of charm hadron

#### $m_{\rm c}\text{=}1.3~\text{GeV}$ and $m_{\rm b}\text{=}4.7~\text{GeV}$

## • <u>Heavy Quark Symmetry (HQS)</u>

Hadron spin = light quark spin x heavy quark spin

#### Few-body study

|     |                      | $\frac{\text{HN1R}}{J=1}$ | J = 0 | $\begin{array}{l} \text{Minnesota} \\ J = 0 \end{array}$ | Av18<br>J = 0 |
|-----|----------------------|---------------------------|-------|----------------------------------------------------------|---------------|
|     |                      | Unbound                   | Bound | Bound                                                    | Bound         |
| DNN | В                    | 208                       | 225   | 251                                                      | 209           |
|     | $M_B$                | 3537                      | 3520  | 3494                                                     | 3536          |
|     | $\Gamma_{\pi Y_c N}$ |                           | 26    | 38                                                       | 22            |
|     | $E_{\rm kin}$        | 338                       | 352   | 438                                                      | 335           |
|     | V(NN)                | 0                         | -2    | 19                                                       | -5            |
|     | V(DN)                | -546                      | -575  | -708                                                     | -540          |
|     | $T_{\rm nuc}$        | 113                       | 126   | 162                                                      | 117           |
|     | $E_{NN}$             | 113                       | 124   | 181                                                      | 113           |
|     | P(odd)               | 75.0%                     | 14.4% | 7.4%                                                     | 18.9%         |
|     |                      |                           |       |                                                          |               |

M. Bayer, C. W. Xiao, T. Hyodo, A. Dote, M. Oka, E. Oset, Phys. Rev. C86, 044004 (2012)





1. Charm nucleus and Kondo effect Heavy-light meson

# D meson Qq



## What's "Kondo effect" ?

Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964))



Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964))

Heavy impurity



## Fermi surface (degenerate state) Loop effect (3) Non-Abelian int. (SU(n) symmetry)

Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964))

Scattering amplitude:





k, I, i, j=  $\uparrow$ ,  $\downarrow$  in SU(n) (n=2 for spin  $\frac{1}{2}$ ) T<sup>1</sup>, ..., T<sup>n^2-1</sup>: generators of SU(n)

impurity

Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) Scattering amplitude:



Log E divergence for infrared limit ( $E \rightarrow 0$ ) for <u>any small coupling</u>  $\rightarrow$  Logarithmic divergence in resistance of electron

| 1. Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | npurity<br>fermion            |                          |                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|------------------------|--|--|--|
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ondo effect to<br>ear physics |                          |                        |  |  |  |
| Fermi gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | electron gas                  | nuclear matter<br>(p,n)  | quark matter           |  |  |  |
| Heavy impurity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | spin-atoms                    | D/B mesons               | c/b quarks             |  |  |  |
| Fermi surface<br>(degenerate state)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~                             | ~                        | ~                      |  |  |  |
| Loop effect<br>(particle-hole creation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | electron-hole                 | e nucleon-hole           | quark-hole             |  |  |  |
| Non-Abelian int.<br>(SU(n) symmetry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SU(2) <sub>spin</sub>         | SU(2) <sub>isospin</sub> | SU(3) <sub>color</sub> |  |  |  |
| <ol> <li>NJL-type: S.Y., K.Sudoh, Phys. Rev. C88, 015201 (2013)</li> <li>QCD Kondo: K. Hattori, K. Itakura, S. Ozaki, S.Y., Phys. Rev. D92, 065003 (2015)</li> <li>Magnetic catalysis QCD Kondo effect: S. Ozaki, K. Itakura, Y. Kuramoto, Phys. Rev. D94, 074013 (2016)</li> <li>Kondo effect in atomic nucleus: S.Y., Phys. Rev. C93, 065204 (2016)</li> <li>Kondo effect of Ds meson: S.Y., arXiv:1607.07948 [hep-ph]</li> <li>QCD Kondo phase: S.Y., K. Suzuki, K. Itakura, arXiv:1604.09229 [hep-ph]</li> <li>Single heavy-quark QCD Kondo cloud, S.Y., arXiv:1608.06450 [hep-ph]</li> <li>Conformal theory, T. Kumura, S. Ozaki, arXiv:1611.07284 [cond-mat]</li> <li>QCD Kondo effect and color superconductivity, T. Kanazawa, S. Uchino, Phys. Rev. D94, 114005 (2016)</li> <li>Topology and stability of QCD Kondo phase, S.Y., K. Suzuki, K. Itakura, submitted to arXiv</li> </ol> |                               |                          |                        |  |  |  |

## $\overline{D}^{0}(\overline{c}U)$ $D^{-}(\overline{c}d)$ $D_{s}^{-}(\overline{c}s)$





2. Kondo effect for D<sub>s</sub><sup>-</sup> and D<sub>s</sub><sup>\*-</sup> meson  
S.Y., arXiv:1607.07948 [hep-ph]  
(1) Interaction of D̄s (D̄s\*) meson and nucleon  

$$\varphi$$
 : nucleon field  

$$\mathcal{L}_{int} = c_s \rho^{\dagger} \varphi (\delta^{ij} P_{sv}^{*i\dagger} P_{sv}^{*j} + P_{sv}^{\dagger} P_{sv}) \text{ spin-nonexchange term}$$

$$+ c_t \sum_{k} \varphi^{\dagger} \sigma^{k} \varphi (\epsilon^{ijk} P_{sv}^{*i\dagger} P_{sv}^{*j} - (P_{sv}^{*k\dagger} P_{sv} - P_{sv}^{\dagger} P_{sv}^{*k}))$$

$$= c_s \rho^{\dagger} \varphi (\delta^{ijk} P_{sv}^{*i\dagger} P_{sv}^{*j} - (P_{sv}^{*k\dagger} P_{sv} - P_{sv}^{\dagger} P_{sv}^{*k}))$$

















#### 3. Kondo effect in atomic nuclei

S.Y., Phys. Rev. C93, 065204 (2016)

#### "simple model" for atomic nucleus

-shell model-like picture-





 $H = H_0 + H_K$ 

cf. We consider one shell space. But this method can be extended to multi-shells.

**D** meson isospin 1/2  $H_0 = \sum \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma}$  kinetic term D<sup>0</sup>(C
U) D<sup>-</sup>(cd)

 $H_{\mathrm{K}} = g \sum \left( c_{k'\downarrow}^{\dagger} c_{k\uparrow} T_{+} + c_{k'\uparrow}^{\dagger} c_{k\downarrow} T_{-} + \left( c_{k'\uparrow}^{\dagger} c_{k\uparrow} - c_{k'\downarrow}^{\dagger} c_{k\downarrow} \right) T_{3} \right)$ 

Kondo (isospin-flipping) interaction à la Lipkin model

 $c_{k\sigma}$ : annihilation operator for nucleon in level k and isospin  $\sigma$  $T_{+}, T_{-}, T_{3}$ : isospin operator for D meson

Cf.  $\pi$ -exchange interaction: S.Y. and K.Sudoh, Phys. Rev. D80, 034008 (2009)

### **Purpose: the ground state energy?**

#### 3. Kondo effect in atomic nuclei

S.Y., Phys. Rev. C93, 065204 (2016)



3. Kondo effect in atomic nuclei S.Y., Phys. Rev. 93, 0 5204 What's about more general cases? Mean-field (+RPA) approach Step 1. Introduce auxiliary fermion fields f  $T_{+} = f_{\uparrow}^{\dagger} f_{\downarrow},$ fermion # 0, 2  $T_{-} = f_{\perp}^{\dagger} f_{\uparrow\uparrow},$ fermion #  $T_3 = \frac{1}{2} (f_{\uparrow}^{\dagger} f_{\uparrow} - f_{\downarrow}^{\dagger} f_{\downarrow}).$ physical space  $\sum_{\sigma} f_{\sigma} = \sum_{\sigma} auxiliary fermion \# constraint}$ Step 2. Introduce Lagran  $\sim$  multiplier  $\lambda$  $H = \sum \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + g \left[ \sum f_{\sigma}^{\dagger} \sigma' c_{k'\sigma'}^{\dagger} c_{k\sigma} - \frac{1}{2} \sum c_{k'\sigma}^{\dagger} c_{k\sigma} \right] + \lambda \left( \sum f_{\sigma}^{\dagger} f_{\sigma} - 1 \right)$ Step 3. Apply mean-field ( $\Delta$ ) approx.  $\Delta = -g \sum \langle f_{\sigma}^{\dagger} c_{k\sigma} \rangle$  "gap" singlet  $\sum c_{k\sigma}^{\dagger} c_{k\sigma} + \sum \left( \Delta^* f_{\sigma}^{\dagger} c_{k\sigma} + \Delta c_{k\sigma}^{\dagger} f_{\sigma} \right) + \lambda \sum f_{\sigma}^{\dagger} f_{\sigma} + \frac{|\Delta|^2}{\alpha} - \lambda$  $H_{\rm M}$ Variation by  $\lambda$  and  $\Delta = \frac{\partial}{\partial \lambda} \langle H_{\rm MF} \rangle = 0, \ \frac{\partial}{\partial \Delta} \langle H_{\rm MF} \rangle = 0$ 

#### 3. Kondo effect in atomic nuclei S.Y., Phys. Rev. C93, 065204 (2016) What's about more general cases? Mean-field (+RPA) approach

Step 1. Introduce auxiliary fermion fields  $f_{\sigma}$  (SU(2))

$$T_{+} = f_{\uparrow}^{\dagger} f_{\downarrow},$$
  

$$T_{-} = f_{\downarrow}^{\dagger} f_{\uparrow},$$
  

$$T_{3} = \frac{1}{2} (f_{\uparrow}^{\dagger} f_{\uparrow} - f_{\downarrow}^{\dagger} f_{\downarrow}).$$

$$\sum f_{\sigma}^{\dagger} f_{\sigma} = 1$$
auxiliary fermion # constraint

Step 2. Introduce Lagrange multiplier  $\lambda$ 

$$H = \sum \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + g \left( \sum f_{\sigma}^{\dagger} f_{\sigma'} c_{k'\sigma'}^{\dagger} c_{k\sigma} - \frac{1}{2} \sum c_{k'\sigma}^{\dagger} c_{k\sigma} \right) + \lambda \left( \sum f_{\sigma}^{\dagger} f_{\sigma} - 1 \right)$$

**Step 3. Apply mean-field (** $\Delta$ **) approx.**  $\Delta = -g \sum \langle f_{\sigma}^{\dagger} c_{k\sigma} \rangle$  "gap" singlet  $H_{\rm MF} = \sum \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum \left( \Delta^* f_{\sigma}^{\dagger} c_{k\sigma} + \Delta c_{k\sigma}^{\dagger} f_{\sigma} \right) + \lambda \sum f_{\sigma}^{\dagger} f_{\sigma} + \frac{|\Delta|^2}{g} - \lambda$ 

**Step 4. Variation by \lambda and \Delta**  $\frac{\partial}{\partial\lambda}\langle H_{\rm MF}\rangle = 0, \quad \frac{\partial}{\partial\Delta}\langle H_{\rm MF}\rangle = 0$ 



3. Kondo effect in atomic nuclei S.Y., Phys. Rev. C93, 065204 (2016) What's about more general cases? Mean-field (+RPA) approach Simple case:  $\varepsilon_k = \varepsilon$   $\varepsilon + \varepsilon_k = \varepsilon$   $k = 1 \quad 2 \quad 3$  $H_{\rm MF} = \phi^{\dagger} \mathcal{H}_{cf}^{\rm diag} \phi + \frac{|\Delta|^2}{\alpha} - \lambda$ Ν Step 3  $=\sum E_k d_{k\sigma}^{\dagger} d_{k\sigma} + \frac{|\Delta|^2}{g} - \lambda \qquad D = \sqrt{(\epsilon - \lambda)^2 + 4N|\Delta|^2}$ **Diagonalized matrix**  $\mathcal{H}_{cf}^{\text{diag}} = \text{diag}\left(\epsilon, \dots, \epsilon, \frac{1}{2}(\epsilon + \lambda - D), \frac{1}{2}(\epsilon + \lambda + D), \epsilon, \dots, \epsilon, \frac{1}{2}(\epsilon + \lambda - D), \frac{1}{2}(\epsilon + \lambda + D)\right)$  $\phi = \begin{pmatrix} d_{1\uparrow} \\ \vdots \\ d_{N\uparrow} \\ \vdots \\ d_{N+1\uparrow} \\ d_{1\downarrow} \end{pmatrix} \begin{pmatrix} d_{1\sigma} = \frac{1}{\sqrt{2}}(c_{1\sigma} - c_{2\sigma}) \\ \vdots \\ d_{N-1\sigma} = \frac{1}{\sqrt{2}}(c_{1\sigma} - c_{N\sigma}) \\ \vdots \\ d_{N-1\sigma} = \frac{1}{\sqrt{2}}(c_{1\sigma} - c_{N\sigma}) \end{pmatrix} \begin{pmatrix} c_{1} + \lambda - D \\ c_{2} + \lambda - D \\ c_{$ New basis  $\vdots \\ d_{N\sigma} = \frac{1}{\sqrt{2N}} \sqrt{1 - \frac{\epsilon - \lambda}{D}} (c_{1\sigma} + \ldots + c_{N\sigma}) - \frac{1}{\sqrt{2}} \sqrt{1 + \frac{\epsilon - \lambda}{D}} f_{\sigma}$  $d_{N+1\sigma} = \frac{1}{\sqrt{2N}} \sqrt{1 + \frac{\epsilon - \lambda}{D}} \left( c_{1\sigma} + \ldots + c_{N\sigma} \right) + \frac{1}{\sqrt{2}} \sqrt{1 - \frac{\epsilon - \lambda}{D}} f_{\sigma}$ 

3. Kondo effect in atomic nuclei S.Y., Phys. Rev. C93, 065204 (2016) What's about more general cases? Mean-field (+RPA) approach Ν Step 3  $=\sum E_k d_{k\sigma}^{\dagger} d_{k\sigma} + \frac{|\Delta|^2}{g} - \lambda \qquad D = \sqrt{(\epsilon - \lambda)^2 + 4N|\Delta|^2}$ **Diagonalized matrix**  $\mathcal{H}_{cf}^{\text{diag}} = \text{diag}\left(\epsilon, \dots, \epsilon, \frac{1}{2}(\epsilon + \lambda - D), \frac{1}{2}(\epsilon + \lambda + D), \epsilon, \dots, \epsilon, \frac{1}{2}(\epsilon + \lambda - D), \frac{1}{2}(\epsilon + \lambda + D)\right)$ lowest energy ( † ) lowest energy (↓)  $E_{\rm MF}(\lambda,\Delta) = \langle \psi_0 | H_{\rm MF} | \psi_0 \rangle \qquad |\psi_0\rangle = d_{N\uparrow}^{\dagger} d_{N\downarrow}^{\dagger} | 0 \rangle$ Step 4  $= 2E_N + \frac{|\Delta|^2}{g} - \lambda$ Variation by  $\frac{\partial}{\partial \lambda} E_{\rm MF} = 0$ ,  $\frac{\partial}{\partial \Delta} E_{\rm MF} = 0$  $\lambda = \epsilon, \quad \Delta = \sqrt{N}q$ "Kondo bound state"  $E_{\rm MF}(\epsilon, \sqrt{Ng}) = \epsilon - Ng$  | Binding energy (MF): Ng

#### 3. Kondo effect in atomic nuclei

S.Y., Phys. Rev. C93, 065204 (2016)

3

Ν

What's about more general cases?

Mean-field (+RPA) approach

Simple case:  $\varepsilon_k = \varepsilon$   $\varepsilon \uparrow \downarrow \uparrow$ 

(1) Mean-value of auxiliary fermion number is one.  $k = 1^{2}$  2

 $\langle \psi_0 | \sum f_\sigma^{\dagger} f_\sigma | \psi_0 \rangle = 1$ 

2 Fluctuation effect (random-phase approximation; RPA)

$$\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \Omega_{\nu} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$\{\Omega_{\nu}\} = \{\Omega_{\pm 1}, \Omega_{\pm 2}, \Omega_{\pm 3}, \Omega_0\}$$
$$= \left\{\pm\sqrt{2}Ng, \pm\sqrt{2}Ng, \pm\sqrt{2}Ng, 0\right\}$$

$$\Delta E_{\text{RPA}} = \frac{1}{2} \sum_{\nu > 0} \Omega_{\nu} - \frac{1}{2} \text{Tr}A$$
$$= \frac{1}{2} (3\sqrt{2} - 5)Ng$$

zero-point energy in H.O. potential

Binding energy (MF+RPA): 1.378Ng close to exact solution 3Ng/2=1.5Ng!!

 $A_{\mu\nu\rho\sigma} = \langle \psi_0 | \left[ a_{0\nu}^{\dagger} a_{1\mu}, \left[ H, a_{1\rho}^{\dagger} a_{0\sigma} \right] \right] | \psi_0 \rangle$ 

 $-B_{\mu\nu\rho\sigma} = \langle \psi_0 | \left[ a_{0\nu}^{\dagger} a_{1\mu}, \left[ H, a_{0\sigma}^{\dagger} a_{1\rho} \right] \right] | \psi_0 \rangle$ 

$$E_{\rm MF+shift+RPA} = E_{\rm MF+shift} + \Delta E_{\rm RPA}$$
$$= \epsilon - \frac{1}{2}(7 - 3\sqrt{2})Ng$$
$$\simeq \epsilon - 1.378Ng.$$

-0.378Ng,

3. Kondo effect in atomic nuclei S.Y., Phys. Rev. C93, 065204 (2016) What's about more general cases? Mean-field (+RPA) approach Simple case:  $\varepsilon_k = \varepsilon | \varepsilon + \delta \varepsilon + \varepsilon_k$ ③ Violation of isospin symmetry (application) 3 k = 13 Ν  $H_0 \to H_0 = \sum \epsilon_{k\sigma} c_{k\sigma}^{\dagger} c_{k\sigma}$  $\varepsilon_{\uparrow} = \varepsilon, \varepsilon_{\downarrow} = \varepsilon + \delta \varepsilon$  $\Delta = 0$  at  $\delta \epsilon = 4Ng$  $\Delta$  $\lambda = \epsilon + \frac{1}{2}\delta\epsilon, \quad \Delta = \sqrt{N}g\sqrt{1 - \frac{(\delta\epsilon)^2}{16N^2a^2}}$  $\delta\varepsilon$ 4Na  $\rightarrow$  isospin breaking  $\tilde{E}_{\rm MF}\left(\epsilon + \frac{1}{2}\delta\epsilon, \sqrt{N}g\sqrt{1 - \frac{(\delta\epsilon)^2}{16N^2g^2}}\right)$  $= \epsilon - Ng + \frac{1}{2}\delta\epsilon - \frac{(\delta\epsilon)^2}{16Na}. \quad E_{\rm MF} = \epsilon \text{ at } \delta\epsilon = 4Ng$ 

#### 4. Conclusion

1) We study the Kondo effect of Ds/Ds\* meson in nuclear matter.

(2) We apply the renormalization group equation and find fixed point at the Kondo scale.

(3) The Kondo scale is relevant to the width of the Kondo resonance as mixing of  $\overline{D}s/\overline{D}s^*$  meson and nucleon in the ground state.

Future works:

- 1. Application to realistic  $\overline{D}s/\overline{D}s^*$  meson-nucleon interaction.
- 2. Application to other heavy hadrons.
- 3. Observables and reactions for experiments.
- 4. etc.

Conclusion

① We study the Kondo effect of Ds/Ds\* meson Heavy meson in nuclear matter

x HQS interaction (non-Abelian)

### = "Kondo resonance/bound" state

Kondo resonance as mixing of Ds/Ds\* meson and nucleon in the ground state.

Future works:

1. Application to realistic  $\overline{D}s/\overline{D}s^*$  meson-nucleon interaction.

2. Application to other heavy hadrons.

- 3. Observables and reactions for experiments.
- 4. etc.



