Hypernuclear structure with antisymmetrized molecular dynamics

Structure of Be hypernuclei (${}^{10}_{\Lambda}$ Be, ${}^{11}_{\Lambda}$ Be and ${}^{12}_{\Lambda}$ Be)

Based on

M. Isaka and M. Kimura, PRC92, 044326 (2015)

H. Homma, M. Isaka and M. Kimura, PRC91, 014314(2015)

Effects of core structure on B_{Λ} values: many-body force effects/density dependence

Based on

M. Isaka, Y. Yamamoto and Th.A. Rijken, PRC**94,** 044310(2016) M. Isaka, Y. Yamamoto and Th.A. Rijken, PRC in print

Masahiro Isaka

(RCNP, Osaka University)

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (nucleon, hyperon)

 - hyperon-nucleon (YN)
 hyperon-hyperon (YY)
 A major issue in hypernuclear physics

Structure: To understand many-body system of nucleons and hyperon

Structure changes by hyperon(s)

- No Pauli exclusion between N and Y "Hyperon as an impurity in nuclei"
- YN interaction is different from NN

Today's talk: "Structure change by a Λ particle"

Interaction: recent achievements

Λ hypernuclei observed so far

• Concentrated in light Λ hypernuclei with A \lesssim 16

- Structure study based on accurate calc. of few-body problems
- Increases of experimental information

Hiyama & Yamada, PPNP **63** (2009) 339. Hashimoto, & Tamura, PPNP **57** (2006), 564.

• Increasing knowledge of ΛN two-body interaction • Development of ΛN interaction models

Figs: taken from Hashimoto and Tamura, PPNP 57 (2006), 564.

Interaction: recent achievements

Λ hypernuclei observed so far

• Concentrated in light Λ hypernuclei with A \lesssim 16

- Structure study based on accurate calc. of few-body problems
- Increases of experimental information

Hiyama & Yamada, PPNP **63** (2009) 339. Hashimoto, & Tamura, PPNP **57** (2006), 564.

- Increasing knowledge of ΛN two-body interaction
 - Development of $\Lambda {\rm N}$ interaction models

Developments of effective interactions

In this study,

G-matrix interaction derived from Nijmegen potential (YNG)

- Nijmegen potential: a meson exchange model
- G-matrix calculation takes into account medium effects

YNG interaction has density (Fermi momentum $k_{\rm F}$) dependence coming from $\Lambda N\mbox{-}\Sigma N$ coupling effects

k_F can be calculated from density e.g. Averaged Density Approximation (ADA) $k_F = \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$, $\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r})$

Y. Yamamoto, T. Motoba and Th.A. Rijken, PTPS185(2010)72.

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (nucleon, hyperon)

 - hyperon-nucleon (YN)
 hyperon-hyperon (YY)
 A major issue in hypernuclear physics

Structure: To understand many-body system of nucleons and hyperon

Structure changes by hyperon(s)

- No Pauli exclusion between N and Y "Hyperon as an impurity in nuclei"
- YN interaction is different from NN

Today's talk: "Structure change by a Λ particle"

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- Concentrated in light Λ hypernuclei
- Most of them have well pronounced cluster structure

Taken from O. Hashimoto and H. Tamura, PPNP **57**(2006),564.

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- Concentrated in light Λ hypernuclei
- Most of them have well pronounced cluster structure

Taken from O. Hashimoto and H. Tamura, PPNP 57(2006),564.

Structure study of such hypernuclei becomes one of interesting topics

Structure in hypernuclei: impurity effects

What is interesting and important?

Change of cluster structure

• "How does a Λ particle modify cluster states?"

Experiment: Tanida, et al., PRL 86, 1982(2001).

How about other cluster states? Dependence on degrees of clustering

Deformation changes by Λ

etc.

"How do nuclear deformations change if Λ particle is added?"

$$+ \Lambda \Rightarrow \Lambda ?$$

Deformation change by Λ in *s*-orbit

ullet Many authors predict the deformation change by Λ in s-orbit

AMD

Skyrme-Hartree-Fock (SHF)

X.R. Zhou, et al., PRC76, 034312('07)

J.W. Cui, X.R. Zhou, H.J. Schulze, PRC**91**,054306('15)

Relativistic mean-field (RMF)

RMF & SHF H. J. Schulze, et al., PTP**123**, 569('10)

¹³_AC (+11.0 MeV) ¹⁴_{AA}C (+21.5 MeV)

 $\beta = \sqrt{5\pi/3} Q_z/ZR_0^2$

-0.1 0 0.1 0.2 0.3 0.4

J.W. Cui, X.R. Zhou, H.J. Schulze, PRC**91**,054306('15)

H. Mei, K. Hagino, J.M. Yao, T. Motoba, PRC91, 064305('15)

Structure in hypernuclei: impurity effects

What is interesting and important?

Change of cluster structure

• "How does a Λ particle modify cluster states?"

Experiment: Tanida, et al., PRL 86, 1982(2001).

How about other cluster states? Dependence on degrees of clustering

Deformation changes by Λ

etc.

"How do nuclear deformations change if Λ particle is added?"

$$+ \Lambda \rightarrow \Lambda$$

Today's talk: "change of cluster structure" Example: Be hypernuclei

Structure of neutron-rich nuclei

Ex.) Be isotopes

- Exotic cluster structure exists in the ground state regions
- Be isotopes have a 2α cluster structure
 - 2α cluster structure is changed depending on the neutron number

Today's talk: "change of cluster structure" changes of 2α cluster structure by Λ and dependence on states Example: ${}^{10}_{\Lambda}Be$, ${}^{11}_{\Lambda}Be$, and ${}^{12}_{\Lambda}Be$

We extended the AMD to hypernuclei

HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

Hamiltonian

$$\hat{H} = \hat{T}_{\scriptscriptstyle N} + \hat{V}_{\scriptscriptstyle NN} + \hat{T}_{\scriptscriptstyle \Lambda} + \hat{V}_{\scriptscriptstyle \Lambda N} - \hat{T}_{\scriptscriptstyle g}$$

NN: Gogny D1S

 Λ N: YNG interactions (ESC08c, NSC97f, NF)

Wave function

- Nucleon part: Slater determinant Spatial part of single particle w.f. is described as Gaussian packet
- Single-particle w.f. of Λ hyperon: Superposition of Gaussian packets
- Total w.f.:

$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\begin{split} \varphi_{N}(\vec{r}) &= \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})] \\ \varphi_{i}(r) &\propto \exp\left[-\sum_{\sigma=x,y,z} v_{\sigma}(r-Z_{i})_{\sigma}^{2}\right] \chi_{i} \eta_{i} \quad \chi_{i} = \alpha_{i} \chi_{\uparrow} + \beta_{i} \chi_{\downarrow} \\ \varphi_{\Lambda}(r) &= \sum_{m} c_{m} \varphi_{m}(r) \\ \varphi_{m}(r) &\propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma}(r-z_{m})_{\sigma}^{2}\right] \chi_{m} \quad \chi_{m} = a_{m} \chi_{\uparrow} + b_{m} \chi_{\downarrow} \end{split}$$

Theoretical framework: HyperAMD

Procedure of the calculation

Variational Calculation $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

For hypernuclei

Theoretical Framework: HyperAMD M. Isaka, et al., PRC83(2011) 044323 M. Isaka, et al., PRC83(2011) 054304

 $\kappa < 0$

Procedure of the calculation

Variational Calculation $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ • Imaginary time development method

• Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Angular Momentum Projection

$$\left|\Phi_{K}^{s};JM\right\rangle = \int d\Omega D_{MK}^{J^{*}}(\Omega) R(\Omega) \Phi^{s+}$$

Generator Coordinate Method(GCM)

•Superposition of the w.f. with different configuration •Diagonalization of $H^{J\pm}_{sK,s'K'}$ and $N^{J\pm}_{sK,s'K'}$

$$H_{sK,s'K'}^{J\pm} = \left\langle \Phi_{K}^{s}; J^{\pm}M \left| \hat{H} \right| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle$$

1. Change of cluster structure

How does a Λ modify 2 α clustering in Be ?

Examples: ${}^{10}_{\Lambda}Be$, ${}^{11}_{\Lambda}Be$ and ${}^{12}_{\Lambda}Be$

- Degrees of structure changes
- Dependence of structure changes on core structure

<u>M. Isaka</u> and M. Kimura, PRC**92**, 044326 (2015) H. Homma, <u>M. Isaka</u> and M. Kimura, PRC**91**, 014314(2015)

Strength of LS force is weakened by 5% (strengthen by 17%) in ⁹Be (¹⁰Be) to reproduce observed $Ex(1/2^+)$ ($Ex(0^+_2)$)

Degrees of 2α clustering is dependent on states

Degrees of 2α clustering is dependent on states

Degrees of 2α clustering is dependent on states

Degrees of 2α clustering is dependent on states

Corresponding states in Be hypernuclei

How is structure change?

Change of 2α clustering

- 2α distance is largely reduced in well developed cluster states
- Difference of 2α clustering still remains despite of large reduction

 B_{Λ} : energy gain from the core states

 B_{Λ} (energy gain) is smaller in well-developed cluster states

Energy components

Ex. ¹¹ Be

Energy components

	¹¹ _Λ Be				¹⁰ Be	
J^{π}	Е	E _N	T_{Λ}	$V_{\Lambda N}$	J^{π}	Е
1/2 ⁺ 1	-77.8	-67.1	7.3	-18.0	0 ⁺ 1	-67.2
1/2 ⁺ 2	-68.4	-60.6	6.4	-14.2	0 ⁺ 2	-60.9

- Main difference of ${\sf B}_\Lambda$ comes from that of $\Lambda {\sf N}$ potential energy ${\sf V}_{\Lambda {\sf N}}$
- Same trend is found in ${}^{10}_{\Lambda}$ Be

$\blacklozenge \Lambda$ binding energy and degrees of 2 α clustering

Intrinsic energy difference: $b_{\Lambda}(\beta) = E_{core}(\beta) - E_{hvp}(\beta)$ 12.0 -50 10.0 10 Be (E [MeV] b_A [MeV 8.0 -60 6.0 $^{11}_{\Lambda} Be(+)$ $^{11}_{\Lambda}$ Be (+) -70 050.00.0quadrupole deformation β 0 5 1.0 () ()quadrupole deformation β

Large β corresponds to well-developed 2 α clustering

Energy gain b_{Λ} decreases as β increases mainly due to decreasing overlap Same trend is found in ${}^{10}_{\Lambda}Be$

$\blacklozenge \Lambda$ binding energy and degrees of 2 α clustering

Energy gain b_{Λ} decreases as β increases mainly due to decreasing overlap Same trend is found in ${}^{10}{}_{\Lambda}$ Be

Structure change in ${}^{10}_{\Lambda}$ Be and ${}^{11}_{\Lambda}$ Be

- Λ causes dynamical reduction of 2α clustering
- But, the difference of the 2α clustering still remains in hypernuclei

 \rightarrow Change of excitation spectra due to the difference of B_{Λ}

Similar phenomena in n-rich hypernucleus ${}^{12}_{\Lambda}$ Be

- ◆ Parity inverted ground state of n-rich ¹¹₄Be₇
 - The ¹¹Be ground state is 1/2⁺, while ordinary nuclei have a 1/2⁻ state as the ground state

→ Vanishing of the magic number N=8

Similar phenomena in n-rich hypernucleus ${}^{12}_{\Lambda}$ Be

- ◆ Parity inverted ground state of n-rich ¹¹₄Be₇
 - The ¹¹Be ground state is 1/2⁺, while ordinary nuclei have a 1/2⁻ state as the ground state

→ Vanishing of the magic number N=8

- 2α clusters with 3 surrounding neutrons occupying molecular orbits (MO)
- MO explains parity inversion, but difficult to see difference of 2 α clustering

Similar phenomena in n-rich hypernucleus ${}^{12}_{\Lambda}$ Be

- ♦ Parity inverted ground state of n-rich ¹¹₄Be₇
 - The ¹¹Be ground state is 1/2⁺, while ordinary nuclei have a 1/2⁻ state as the ground state

→ Vanishing of the magic number N=8

- 2α clusters with 3 surrounding neutrons occupying molecular orbits (MO)
- MO explains parity inversion, but difficult to see difference of 2 $\!\alpha$ clustering

Results: Parity reversion of ${}^{12}_{\Lambda}$ Be

♦ Ground state of ¹²[∧] Be

Results: Parity reversion of ${}^{12}_{\Lambda}$ Be

- ♦ Ground state of ¹² ABe
 - The parity reversion of the ${}^{12}{}_{\Lambda}$ Be g.s. occurs by the Λ hyperon

Deformation and Λ binding energy

Λ slightly reduces deformations, but the deformation is still different
 Λ hyperon coupled to the 1/2⁻ state is more deeply bound than that coupled to the 1/2⁺ state

– Due to the difference of the deformation between the $1/2^-\,$ and $1/2^+\,$ states

Parity reversion occur reflecting the difference in 2α clustering of ¹¹Be

could be an evidence for difference of clustering in ¹¹Be

• To study structure change by Λ , we applied an extended version of AMD to Be hypernuclei.

${}^{10}{}_{\Lambda}\text{Be}$ and ${}^{11}{}_{\Lambda}\text{Be:}$ changes of various 2 α cluster structure

- Λ largely reduces radii of well-developed cluster states
- Difference of deg. of 2 α clustering still remains even in Be hypernuclei

${}^{12}{}_{\Lambda}$ Be: Exotic cluster structure

– The abnormal parity of ^{11}Be ground state is reverted in $^{12}{}_{\Lambda}Be$

2. Effects of core structure on \mathbf{B}_{Λ} values

Many-body force effects appear in B_{Λ} ?

M.Isaka, Y. Yamamoto and Th.A. Rijken, PRC**94,** 044310(2016) M. Isaka, Y. Yamamoto and Th.A. Rijken, PRC in print

Individual problems

1) B_{Λ} values and density dependence of the interaction

Today's talk: importance of core description

2) Many-body force effects

Is it possible to describe mass dependence of observed B_{Λ} ?

What is essential to reproduce it?

Toward heavier and exotic Λ hypernuclei

Experiments at J-PARC and JLab etc.

• Hypernuclear chart will be extended to heavier regions

Different structure affects B_{Λ} values through dens. dep. of interaction?

B_{Λ} as a function of mass number A

Observed data of binding energy of Λ (B_{Λ}) (9 \leq A \leq 51)

"Mass dependence of B_{Λ} " and "Density dependence of ΛN (ΛNN) interaction"

Bertini *et al.*, NPA**83**,306(1979), Davis, Juric , *et al.*, NPB**52**(1973), Davis, NPA**547**,369(1992);NPA**754**,3c(2005), Ajimura *et. al.*, NPA**639**(1998)93c, Pile *et al.*, PRL**66**,2585(1991), Hotchi *et al.*, PRC**64**, 044302(2001), Hashimoto and Tamura, PPNP**57**,564(2006), Tang, *et. al.*, PRC**90**,034320(2014).

Purpose of this study

Purpose

• To reveal many-body force effects on B_{Λ} values based on the interaction model ESC proposed by Nijmegen group

Results: B_{Λ} as a function of mass number A

HyperAMD w/ ESC08c

$$\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r})$$
$$k_F = (1+\alpha) \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$$

Small parameter α is chosen so as to

 $-B_{\Lambda}^{\text{calc}}$

-8.1

-8.0

-8.1

-8.9

-9.1

-10.4

-11.2

 $\langle \rho \rangle$

0.072

0.060

0.072

0.077

0.075

0.081

0.083

в

0.50

0.87

0.45

0.57

0.58

0.50

0.39

%Li

 $^{9}_{\Lambda}$ Be

 $^{9}_{\Lambda}B$

 $^{10}_{\Lambda}$ Be

 $^{10}_{\Lambda}\mathrm{B}$

 ${}^{\hat{1}1}_{\Lambda}{}^{\mathrm{B}}_{\mathrm{B}}$

 γ 2°

 1°

 2°

 1°

 1°

 29°

 48°

 k_F

1.01

0.95

1.01

1.04

1.03

1.05

1.06

 $-B^{exp}_{\Lambda}$

 -8.50 ± 0.12

 -6.71 ± 0.04

 -8.29 ± 0.18

 -9.11 ± 0.22 -8.55 ± 0.18

 -8.89 ± 0.12

 -10.24 ± 0.05 -11.37 ± 0.06

 -11.38 ± 0.02

HyperAMD w/ ESC08c successfully reproduces B_A in wide mass regions

Description of the core nuclei

• "Full calculation" vs. "Spherical calculation"

"Full calculation": all of the intrinsic w.f. are used in the GCM calc.

Deformation of the ground states is essential to reproduce B_A

"Description of the core structure"

Ex.: ¹¹B More sophisticated treatment: GCM calc. on (β , γ) plane 10г ¹¹**B** NEG **B(E2)** e²fm⁴ T. Suhara and Y. Kanada-En'yo, PTP123,303(2010) 8 β const. $β-\gamma$ const. Exp. [MeV] 60° -45 $7/2^{-}$ 6 1.9 ± 0.4 **Present calc.** 6 Δ (AMD) $-3/2\overline{2}$ -60 $5/2^{-}$ 4 6 16 14 ± 3 -75 1/2-2 0° 0.2 0.4 0.6 0.8 1.0 $3/2_{1}$ β ¹² _Δ B (β-γ) ¹²^A B (Spherical) ¹² _AB (EXP) **B**_A = 9.7 MeV $B_{\Lambda} = 11.2 \text{ MeV}$ $B_{\Lambda} = 11.4 \pm 0.02 \text{ MeV}$ $(k_r = 1.06 \text{ fm}^{-1})$ $(k_{r} = 1.15 \text{ fm}^{-1})$

Summary and future plans

Summary

ullet To study structure change by Λ in cluster states of Be hypernuclei

${}^{\bf 10}{}_{\Lambda} Be$ and ${}^{\bf 11}{}_{\Lambda} Be$: changes of various 2 α cluster structure

- Λ largely reduces radii of well-developed cluster states
- Difference of deg. of 2α clustering still remains even in Be hypernuclei

${}^{12}{}_{\Lambda}$ Be: Exotic cluster structure

– The abnormal parity of ^{11}Be ground state is reverted in $^{12}{}_{\Lambda}Be$

\bullet Systematics of B_Λ and density dependence of the ΛN interaction

– Proper description of the core nuclei is important for ${\rm B}_{\Lambda}$ values

Future plans

- Structure study of hypernuclei
 - α clustering of both single and double Λ hypernuclei

Based on structure calculation

CSB effects in medium-heavy hypernuclei