p-shell Hypernuclear Structure and its Production Rates based on Parity-Mixing Model

K. Itonaga (Gifu University)

- A. Umeya (Nippon Institute of Technology)
- T. Motoba (Osaka E-C University)

International Workshop SNP2017 March 12-14, 2017 Neyagawa, Japan

1. Introduction

Success of high-resolution experiments at JLab

¹²C(e,e'K⁺) ¹² / Bの例

Hall A: M. lodice et al., PRL 99 (2007) ∆E=0.67 MeV

Hall C: L. Tang et al., PRC 90 (2014) △E=0.54 MeV

(b) But, extra peak such as #4 cannot be explained

Exp XS and DWIA estimates: are in good agreement. The present theor. Framework is proved to be powerful.

12C(γ,K+) Cross sec. calculated in DWIA at E_γ = 1.5GeV, θ_K(Lab)=7deg

Table I. Comparison of excitation energies of $^{12}_{\Lambda}B$ and its photoproduction cross sections $d\sigma/d\Omega$ (nb/sr).

E05-115 Experiment [9] $\theta_{\gamma K} \approx 6.8^{\circ}$				CAL: SLA [16] at $\theta_K = 7^\circ$				CAL: S6B [17]	
Peak	$-B_{\Lambda}(\text{MeV})$	E_x (MeV)	$d\sigma/d\Omega$	J_f	E_x (MeV)	$d\sigma/d\Omega$	Sum	$d\sigma/d\Omega$	Sum
# 1-1	-11.524	$(0.0)_{GS}$		1^{-}_{1}	$(0.0)_{GS}$	21.1		10.5	
# 1-2	-11.345	(0.179)	101.0	2^{\pm}_{1}	(0.186)	89.3	100.4	63.1	73.6
# 2	-8.415	(3.109)	33.5	1^{-}_{2}	(2.398)	48.4	56.1	19.0	24.1
				0_{1}^{-}	(3.062)	7.7		5.2	
				2^{-}_{2}	(5.022)	7.0		4.9	
# 3	-5.475	(6.049)	26.0	$2_{3}^{=}$	(6.267)	11.8	23.8	8.4	15.5
				1^{-}_{3}	(6.389)	5.0		2.3	
#4	-2.882	(8.857)	20.5						
				2^{+}_{1}	(11.000)	1.3		1.4	
# 5	-1.289	(10.235)	31.5	1_{1}^{+}	(11.120)	8.2	9.5	5.1	6.5
#6	-0.532	(10.992)	87.7	31	(11.081)	77.6	130.7	57.1	81.1
				2^{+}_{2}	(11.610)	53.2		24.0	
				1_{2}^{+}	(12.129)	6.1		7.1	
# 8	0.973	(12.497)	28.5	2^{+}_{3}	(12.784)	20.0	29.8	9.1	20.4
				1^{+}_{3}	(13.176)	3.7		4.2	

2. Extended theoretical treatment required -----

Standard configuration assumed so far:

Model space for ¹¹B core

(a) ordinary model space $J_{\text{core}}^ (0s)^4 (0p)^7$ (0p-0h)

Ordinary model space for ${}^{12}_{\Lambda}B$ hypernuclei

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$$
 (b) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{+})$

Two kinds of extensions to include both natural and unnatural parity core states

Extention (1) 1*p*-1*h* core excitation is taken into account

(c)
$$J_{\text{core}}^+ \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^+)$$
 (d) $J_{\text{core}}^+ \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^-)$

Extention (2) Configurations mixed by ΛN interaction

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0p^{\Lambda} \Rightarrow {}^{12}_{\Lambda}B(J^{-})$$

(b)
$$J_{\text{core}}^{-} \otimes 0p^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0s^{\Lambda} \Rightarrow {}^{12}_{\Lambda}B(J^{+})$$

$$T^{HB}(J_{\text{core}}^{+}) \otimes \Lambda(0p) \Rightarrow {}^{12}_{\Lambda}B(J^{-})$$

$$T^{HB}(J_{\text{core}}^{+}) \otimes \Lambda(0s) \Rightarrow {}^{12}_{\Lambda}B(J^{+})$$

$$T^{HB}(J_{\text{core}}^{-}) \otimes \Lambda(0p) \Rightarrow {}^{12}_{\Lambda}B(J^{+})$$

$$T^{HB}(J_{\text{core}}^{-}) \otimes \Lambda(0p) \Rightarrow {}^{12}_{\Lambda}B(J^{+})$$

$$T^{HB}(J_{\text{core}}^{-}) \otimes \Lambda(0p) \Rightarrow {}^{12}_{\Lambda}B(J^{-})$$

$$T^{HB}(J_{\text{core}}^{-}) \otimes \Lambda(0s) \Rightarrow {}^{12}_{\Lambda}B(J^{-})$$

$$T$$

2-a) Application of the extention (1) to ¹⁹_AF hypernuclei A. Umeya and T. Motoba, Nucl.Phys.A 954 (2016) 242. Energy levels and spectroscopic factors of n-pickup reaction from ¹⁹F

Negative parity states (J_{core}^-) of ¹⁸F, which are constructed by 1*p*-1*h* states, exist in low-lying energy region. Negative parity states (J^-) of ¹⁹_AF are constructed by $(0s)^4(0p)^{11}(sd)^3(0s^A)$ and $(0s)^4(0p)^{12}(sd)^1(fp)^1(0s^A)$ configurations.

8

Cross sections of ¹⁹F(K^- , π^-) at different incident momemta

The microscopic DWIA calculations at high energy kaon momenta up to 1.8 GeV/c have been carried out for the first time. The DWIA calculation at p_K =1.8 GeV/c correspond to the J-PARC E13 experiment [H. Tamura et al., Proceedings of HYP2015]. E2, M1 and E1 transitions of 19 _AF are extensively estimated. The result E2(5/2+ \rightarrow 1/2+) should be compared with J-PARC E13 exp.

Accumulated production cross sections Y and y-decay rates of $^{19}\Lambda$ F

$J_i(T)$	E _i	Y _i	$J_{f}(T)$	E_{f}	ΔE_{if}	branching	Т
	MeV	μb		MeV	MeV	ratio	s ⁻¹
3/2+(0)	0.419	125.0	1/2+(0)	0.000	0.419	1.000	4.24×10^{11}
5/2+(0)	0.727	120.5	1/2+(0)	0.000	0.727	0.989	4.28×10^9
			3/2+(0)	0.419	0.308	0.011	4.75×10^{7}
7/2+(0)	1.289	19.1	3/2+(0)	0.419	0.869	0.011	$1.20 imes 10^{10}$
			5/2+(0)	0.727	0.561	0.989	$1.08 imes 10^{12}$
1/2-(0)	1.311	265.1	1/2+(0)	0.000	1.311	0.681	$2.93 imes 10^{10}$
			3/2+(0)	0.419	0.892	0.319	$1.37 imes 10^{10}$

10

2-b) Extensions of both (1)+(2) for ${}^{12}_{\Lambda}B$ our new theoretical challenge *"parity-mixing mediated by \Lambda"* (a new concept seen only in hypernucleus)

¹²
$$_{\Lambda} B(J_{H}^{-}) = \{ {}^{11}B(J_{C}^{-})_{0} \times \Lambda_{s} \}^{(0)} + \{ {}^{11}B(J_{C}^{+})_{1} \times \Lambda_{p} \}^{(2)}$$

¹² $_{\Lambda} B(J_{H}^{+}) = \{ {}^{11}B(J_{C}^{-})_{0} \times \Lambda_{p} \}^{(1)} + \{ {}^{11}B(J_{C}^{+})_{1} \times \Lambda_{s} \}^{(1)}$

→ Energy levels, Proton-pickup S factors, → DWIA cross section of ${}^{12}C$ (e,e'K+) ${}^{12}{}_{\Lambda}B$

 J^+ states (red lines) mainly consist of ${}^{11}B(J^+_{core}) \otimes \Lambda(0s)$.

12

3. DWIA estimates of (γ,K⁺) hypernuclear production cross section

(Energy levels of core nucleus)

Proton pickup S-factor 13

Results : Cross sections of ${}^{12}C(e, e'K^+) {}^{12}_{\Lambda}B$

Results : Configuration mixing in the unnatural parity state

$${}^{12}{}_{\Lambda}B(2^{+}, E_{x}=9.056 \text{ MeV}) = 0.84 [{}^{11}B(3/2^{+}{}_{1}) \otimes \Lambda(0s)] + 0.04 [{}^{11}B(5/2^{+}{}_{1}) \otimes \Lambda(0s)] + 0.06 [{}^{11}B(5/2^{+}{}_{2}) \otimes \Lambda(0s)] + 0.02 [{}^{11}B(5/2^{+}{}_{2}) \otimes \Lambda(0s)] + 0.02 [{}^{11}B(3/2^{-}{}_{1}) \otimes \Lambda(0p_{3/2})] + \cdots$$

Energy levels obtained in the similar parity-mixed multi-configuration calculations

(XS calculation is in progress)

5. Summary

(1) High resolution reaction spectroscopic EXPs (e,e'K+) at Jlab (and Mainz): disclosing new interesting feature of hypernuclear structure such as "parity-mixing mediated by hyperon". (2) Correspondingly, the multi-configuration calculation of level structure are carried out, showing promising results (yet preliminary). (3) Thus extended WF are used to estimate DWIA cross sections for (e,e'K+) and (pi+,K+) reactions to be compared with Jlab and KEK.(in progress)

Thank you !

Buckup slides follow:

New transition components connected via (γ,K⁺) in extended model space

proton is converted $- \rightarrow \Lambda$ in *s* or *p* orbits

(In the past works, only green arrows are taken into account.)

$${}^{12}{}_{\Lambda}B(J_{H}^{-}) = \{([s^{4}]p^{7}; J_{c}^{-})_{0} \times \Lambda_{s}\}^{(0)} + \{([s^{4}]p^{6}(sd)^{1}; J_{c}^{+})_{1} \times \Lambda_{p}\}^{(2)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{p}\}^{(2)}$$

$${}^{12}C(0^{+})_{0+2h_{0}} = |[s^{4}]p^{8} > + |[s^{4}]p^{7}(fp)^{1} > + |[s^{4}]p^{6}(sd)^{2} > + |[s^{3}]p^{8}(sd)^{1} > + |[s^{2}]p^{10} >$$

$${}^{12}{}_{\Lambda}B(J_{H}^{+}) = \{([s^{4}]p^{7}; J_{c}^{-})_{0} \times \Lambda_{p}\}^{(1)} + \{([s^{4}]p^{6}(sd)^{1}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)}$$

Problems to be checked: What kind of effective interactions should be used in describing the WF in the extended model space. 22

Extended model space for target nucleus

Extension of model space up to 2p-2h ($2\hbar\omega$) for target nucleus ¹²C allows the ¹²_AB production through various configurations.

今回の理論研究の試み — 殻殻模空間の拡張 —

コア核が unnatural parity の状態に励起したものを記述できるようにする

¹²AB のコア核は 1ħω まで 標的核 ¹²C は 2ħω まで

(従来は黒い矢印の遷移のみを扱っていたことになる)

DWIA XS estimates in an extended model

Theor. Result is still preliminary, but very promising. Extensive calc. are in progress.

DWIA XS calculations with extended WF are in progress.

Summary

In order to get a comprehensive description of hypernuclear structure, we have introduced the multi-configuration wave functions in which we take account of the parity-mixing intershell coupling mediated by a Λ -hyperon.

Recent $(e, e'K^+)$ reaction experiments done at the Jefferson Lab have provided us with remarkably high resolution data for *p*-shell hypernuclei. These experiments have confirmed the major peaks and subpeaks predicted by the DWIA calculations based on the normal-parity nuclear core wave functions coupled with a Λ -hyperon in s- and porbits. At the same time, the data also show some extra subpeaks which seem difficult to be explained within the *p*-shell nuclear normal parity configurations employed so far. Thus we have extended the model space so as to include the new configuration which consists of non-normal parity nuclear core-excited states and the Λ in s-orbit. By this extension, we emphasize that the Λ -hyperon plays an interesting role to induce intershell mixing of the nuclear core-excited states having different parities. This is a challenge in view of the present-day hypernuclear spectroscopic study.

通常の p 殻模型計算との比較

¹²C(γ, K^+)¹²_AB 生成断面積の理論計算 T. Motoba *et al.*, PTPS185, 224 (2010)

最近の p 殻 Λ ハイパー核の生成実験 ¹²C(e, e'K⁺) による ¹²_ΛB ハイパー核の生成 JLab Hall C E01-011 and E05-115 L. Tang *et al.*, PRC90, 034320 (2014)

殻模型ハミルト	ニアン
NN 有効相互作	用
$\langle p^2 V p^2 \rangle$	Cohen-Kurath (8–16) TBME S. Cohen, D. Kurath, NP73, 1 (1965)
$\langle (sd)^2 V (sd)^2 \rangle$	modified Kuo-Brown G-matrix T. T. S. Kuo, G. E. Brown, NP85, 40 (1966)
$\langle p(sd) V p(sd)\rangle$	Millener-Kurath D. J. Millener, D. Kurath, NPA255, 315 (1975)
$\langle p^2 V (sd)^2 \rangle$	modified Kuo-Brown G-matrix (SFO) T. Suzuki, R. Fujimoto, T. Otsuka, PRC67, 044302 (2003)
それ以外	Anantaraman-Toki-Bertsch G-matrix N. Anantaraman, H. Toki, G. F. Bertsch, NPA398, 269 (1983)
ΛN 有効相互作	用
$\langle N\Lambda V N\Lambda \rangle$	Nijmegen NSC97f Th. A. Rijken, V. G. J. Stoks, Y. Yamamoto, PRC59, 21 (1999)
核子の1粒子エ	

Unnatural parity 状態のコア核を現すために sd 殻軌道について調整