





# The lifetime puzzle of hypertriton $^{3}_{\Lambda}H$

## Qiang Zhao

#### Institute of High Energy Physics, CAS

# and Theoretical Physics Center for Science Facilities (TPCSF), CAS

zhaoq@ihep.ac.cn

In collaboration with J.-M. Richard and Q. Wang, arXiv:1604.04208v1 [nucl-th]

International Workshop on Strangeness Nuclear Physics, March 12-14, 2017, Ekimae Campus, Osaka Electro-communication University



- About  $\Lambda$  hyperon
- Lifetime of free  $\Lambda$
- Lifetime of  ${}^3_{\Lambda}$ H
- Explanation for the shortened lifetime of  ${}^{3}_{\Lambda}$ H
- Brief summary

# Nuclear chart with strangeness



# Lifetime measurement of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$



#### Free $\Lambda$ : (263.2 ± 2.0) ps

• The lifetimes of both  ${}^{3}_{\Lambda}$ H and  ${}^{4}_{\Lambda}$ H are shorter than that of the free  $\Lambda$ !

C. Rappold et al., Physics Letters B 728 (2014) 543–548



ALICE Collaboration, Physics Letters B 754 (2016) 360–372



For a "weakly-bound" "light" hyper-nucleus, its lifetime should not be much different from that of a free  $\Lambda$ .

# Why surprising?

• For the weakly bound system, the non-mesonic weak decay will be suppressed by the pion propagator. Hence, one would expect that the lifetime of  ${}^{3}_{\Lambda}$ H is more or less the same as the free  $\Lambda$ .

**Non-mesonic weak decay**, e.g.  ${}_{\Lambda}^{3}H \rightarrow p + 2n, d + n$ 



Mesonic decay is dominant via  ${}^{3}_{\Lambda}H \rightarrow \pi^{-} + {}^{3}_{H}H , \pi^{-} + d$   $+ p, \pi^{-} + 2p + n, \pi^{0} + d + n, \pi^{0} + p$ + 2n H. Kamada, J. Golak, K. Miyagawa, H. Witała, and W. Glockle, Phys. Rev. C 57, 1595 (1998)



Pionic weak transition operator has been parametrized out:

$$O = i\sqrt{2}G_F m_\pi^2 \overline{u_N}(\vec{k}_3) (A_\pi + B_\pi \gamma_5) u_\Lambda(\vec{k}_3)$$
$$O \to i\sqrt{2}G_F m_\pi^2 \left(A_\pi + \frac{B_\pi}{2\overline{M}}\vec{\sigma} \cdot \vec{k}_\pi\right)$$

| Channel                                         | $\Gamma [{ m sec}^{-1}]$ | $\Gamma/\Gamma_{\Lambda}$ | $\tau = \Gamma^{-1}$ [sec]           |
|-------------------------------------------------|--------------------------|---------------------------|--------------------------------------|
| $^{3}$ He $+\pi^{-}$ and $^{3}$ H $+\pi^{0}$    | 0.146 ×10 <sup>10</sup>  | 0.384                     | 0.684 ×10 <sup>-9</sup>              |
| $d+p + \pi^-$ and $d+n+\pi^0$                   | $0.235 \times 10^{10}$   | 0.619                     | $0.425 \times 10^{-9}$               |
| $p + p + n + \pi^{-}$ and $p + n + n + \pi^{0}$ | $0.368 \times 10^{8}$    | 0.0097                    | $0.271 \times 10^{-7}$               |
| All mesonic channels                            | $0.385 \times 10^{10}$   | 1.01                      | $0.260 \times 10^{-9}$               |
| d + n                                           | $0.67 \times 10^{7}$     | 0.0018                    | $0.15 \times 10^{-6}$                |
| p + n + n                                       | $0.57 \times 10^{8}$     | 0.015                     | $0.18 \times 10^{-7}$                |
| All nonmesonic channels                         | $0.64 \times 10^{8}$     | 0.017                     | $0.16 \times 10^{-7}$                |
| All channels                                    | $0.391 \times 10^{10}$   | 1.03                      | $2.56 \times 10^{-10}$               |
| Expt. [6]                                       |                          |                           | $2.64 + 0.92 - 0.54 \times 10^{-10}$ |
| Expt. (averaged) [11]                           |                          |                           | $2.44 + 0.26 - 0.22 \times 10^{-10}$ |

TABLE I. Partial and total mesonic and nonmesonic decay rates and corresponding lifetimes.



I) Direct pion emission





• Highly suppressed for  $n\pi^{0}$ !

PDG: BR( $\Lambda \rightarrow p\pi^{-}$ ) = (63.9±0.5)% BR( $\Lambda \rightarrow n\pi^{0}$ ) = (35.8±0.5)%

Direct pion emission CANNOT be dominant!

## The $\Lambda$ weak decay



### **II)** Pole contribution via baryon internal conversion



#### In the quark model the transition amplitude can be expressed as:



$$\mathcal{M} = \langle p | H_{\pi} | n \rangle \frac{i}{\not p - m_n} \langle n | H_w | \Lambda \rangle + \langle p | H_w | \Sigma^+ \rangle \frac{i}{\not p - m_{\Sigma}} \langle \Sigma^+ | H_{\pi} | \Lambda \rangle$$

$$H_{w} = H_{w}^{PC} + H_{w}^{PV} \qquad \left\{ \begin{array}{l} H_{w}^{PC} = \frac{G_{F}}{\sqrt{2}} \int dx [j_{\mu}^{(-)}(x)j^{(+)\mu}(x) + j_{5\mu}^{(-)}(x)j_{5}^{(+)\mu}(x)] \\ H_{w}^{PV} = \frac{G_{F}}{\sqrt{2}} \int dx [j_{\mu}^{(-)}(x)j_{5}^{(+)\mu}(x) + j_{5\mu}^{(-)}(x)j^{(+)\mu}(x)] \end{array} \right.$$

$$\langle B_f | H_w^{PC} | B_i \rangle = 6 \langle B_f(1,2,3) | H_w^{PC}(1,2) | B_i(1,2,3) \rangle$$

 $H_w^{PC}(1,2) = \delta(\mathbf{P}_f - \mathbf{P}_i) \frac{G_F}{\sqrt{2}} \cos \theta_C \sin \theta_C \langle \tilde{B}_f(1,2,3) | \tau_1^{(-)} v_2^{(+)} (1 - \sigma_1 \cdot \sigma_2) \delta(\mathbf{r}_1 - \mathbf{r}_2) | \tilde{B}_i(1,2,3) \rangle$ 

Explicit calculation of the strong and weak transition matrix elements in the quark model:



The non-relativistic expansion gives

$$H_{\pi} = \frac{1}{f_{\pi}} \sum_{j} \left[ \frac{q_0}{E_f + M_f} \sigma_j \cdot \boldsymbol{P}_f + \frac{q_0}{E_i + M_i} \sigma_j \cdot \boldsymbol{P}_i - \sigma_j \cdot \boldsymbol{q} + \frac{q_0}{2\mu_q} \sigma_j \cdot \boldsymbol{p}_j \right] \hat{I}_j^{\pi} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_j}$$

Goldberger-Treiman relation:

$$g_{B_i B_f \pi} \equiv \frac{C_{B_i B_f \pi} g_A(B_i B_f \pi) \bar{M}}{f_\pi}$$

$$g_A(B_i B_f \pi) \equiv \frac{\langle B_f | \sum_j \hat{I}_j^{\pi} \sigma_{jz} | B_i \rangle}{\langle B_f | \sigma_z^{tot} | B_i \rangle}$$

#### The transition amplitude becomes:

$$\mathcal{M} = \hat{\mathcal{V}} \, \mathcal{G}(\Lambda \to p \pi^-)$$

$$C_{B_i B_f \pi}$$
 indicates the SU(3) flavor symmetry breaking.

#### **Explicit cancellation between the pole terms.**

 $C_{B_iB_f\pi}$  is determined by the free  $\Lambda$  and  $\Sigma$  decays and will be fixed.

| $\langle n   \hat{\mathcal{O}}^W   \Lambda \rangle$ | $\langle p   \hat{\mathcal{O}}^W   \Sigma^+ \rangle$ | $\langle n   \hat{\mathcal{O}}^W   \Sigma^0 \rangle$ |
|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $-1/\sqrt{6}$                                       | +1                                                   | $1/\sqrt{2}$                                         |

| Process                      | $g_A$            | Process                       | $g_A$            |
|------------------------------|------------------|-------------------------------|------------------|
| $p \rightarrow n\pi^+$       | 5/3              | $\Sigma^+ \to \Lambda \pi^+$  | $-2/\sqrt{6}$    |
| $n \rightarrow p\pi^-$       | 5/3              | $\Sigma^- \to \Lambda \pi^-$  | $-2/\sqrt{6}$    |
| $n \to n\pi^0$               | $5/(3\sqrt{2})$  | $\Sigma^+ \to \Sigma^0 \pi^+$ | $4/(3\sqrt{2})$  |
| $p \rightarrow p \pi^0$      | $-5/(3\sqrt{2})$ | $\Sigma^+ \to \Sigma^+ \pi^0$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^+ \pi^-$ | $-2/\sqrt{6}$    | $\Sigma^- \to \Sigma^0 \pi^-$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^0 \pi^0$ | $-2/\sqrt{6}$    |                               |                  |

 $f_{\pi}$ 

#### All involve cancellations among the pole terms due to SU(3) flavor symm.



$$\mathcal{G}_{(\Lambda \to p\pi^{-})} \equiv \left[ \frac{g_{np\pi^{-}} C^W_{(\Lambda \to n)}}{M^2_{\Lambda} - M^2_n} + \frac{g_{\Lambda \Sigma^{+} \pi^{-}} C^W_{(\Sigma^{+} \to p)}}{M^2_p - M^2_{\Sigma}} \right]$$

$$R \equiv \frac{\Gamma(\Lambda \to p \pi^-)}{\Gamma(\Lambda \to n \pi^0)} \simeq 2$$

PDG: BR( $\Lambda \rightarrow p\pi^{-}$ ) = (63.9±0.5)% BR( $\Lambda \rightarrow n\pi^{0}$ ) = (35.8±0.5)%

| $\langle n   \hat{\mathcal{O}}^W   \Lambda \rangle$ | $\langle p   \hat{\mathcal{O}}^W   \Sigma^+ \rangle$ | $\langle n   \hat{\mathcal{O}}^W   \Sigma^0 \rangle$ |
|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $-1/\sqrt{6}$                                       | +1                                                   | $1/\sqrt{2}$                                         |

| Process                      | $g_A$            | Process                       | $g_A$            |
|------------------------------|------------------|-------------------------------|------------------|
| $p \rightarrow n\pi^+$       | 5/3              | $\Sigma^+ \to \Lambda \pi^+$  | $-2/\sqrt{6}$    |
| $n \rightarrow p\pi^-$       | 5/3              | $\Sigma^- \to \Lambda \pi^-$  | $-2/\sqrt{6}$    |
| $n \to n\pi^0$               | $5/(3\sqrt{2})$  | $\Sigma^+ \to \Sigma^0 \pi^+$ | $4/(3\sqrt{2})$  |
| $p \rightarrow p \pi^0$      | $-5/(3\sqrt{2})$ | $\Sigma^+ \to \Sigma^+ \pi^0$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^+ \pi^-$ | $-2/\sqrt{6}$    | $\Sigma^- \to \Sigma^0 \pi^-$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^0 \pi^0$ | $-2/\sqrt{6}$    |                               |                  |

#### All involve cancellations among the pole terms due to SU(3) flavor symm.



| $\langle n   \hat{\mathcal{O}}^W   \Lambda  angle$ | $\langle p   \hat{\mathcal{O}}^W   \Sigma^+ \rangle$ | $\langle n   \hat{\mathcal{O}}^W   \Sigma^0 \rangle$ |
|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $-1/\sqrt{6}$                                      | +1                                                   | $1/\sqrt{2}$                                         |

| Process                      | $g_A$            |    | Process                       | $g_A$            |
|------------------------------|------------------|----|-------------------------------|------------------|
| $p \to n\pi^+$               | 5/3              |    | $\Sigma^+ \to \Lambda \pi^+$  | $-2/\sqrt{6}$    |
| $n \rightarrow p\pi^-$       | 5/3              |    | $\Sigma^- \to \Lambda \pi^-$  | $-2/\sqrt{6}$    |
| $n \rightarrow n \pi^0$      | $5/(3\sqrt{2})$  | )  | $\Sigma^+ \to \Sigma^0 \pi^+$ | $4/(3\sqrt{2})$  |
| $p \rightarrow p \pi^0$      | $-5/(3\sqrt{2})$ | 2) | $\Sigma^+ \to \Sigma^+ \pi^0$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^+ \pi^-$ | $-2/\sqrt{6}$    |    | $\Sigma^- \to \Sigma^0 \pi^-$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^0 \pi^0$ | $-2/\sqrt{6}$    |    |                               |                  |



$$\mathcal{G}_{(\Sigma^+ \to p\pi^0)} \equiv C^W_{(\Sigma^+ \to p)} \left[ \frac{g_{pp\pi^0}}{M_{\Sigma}^2 - M_p^2} + \frac{g_{\Sigma^+ \Sigma^+ \pi^0}}{M_p^2 - M_{\Sigma}^2} \right]$$

IV)  $\Sigma^- \rightarrow n \pi^-$ 



$$\mathcal{G}_{(\Sigma^- \to n\pi^-)} \equiv \left[ \frac{g_{\Sigma^- \Lambda \pi^-} C^W_{(\Lambda \to n)}}{M_n^2 - M_\Lambda^2} + \frac{g_{\Sigma^- \Sigma^0 \pi^-} C^W_{(\Sigma^0 \to n)}}{M_n^2 - M_\Sigma^2} \right]$$

TABLE I: Weak matrix element  $C^W_{(A \to B)} \equiv \langle B | \hat{\mathcal{O}}^W | A \rangle$  for the baryon conversions, with  $\hat{\mathcal{O}}^W \equiv \tau_1^{(-)} v_2^{(+)} (1 - \sigma_1 \cdot \sigma_2)$ .

| $\langle n   \hat{\mathcal{O}}^W   \Lambda  angle$ | $\langle p   \hat{\mathcal{O}}^W   \Sigma^+ \rangle$ | $\langle n   \hat{\mathcal{O}}^W   \Sigma^0 \rangle$ |
|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $-1/\sqrt{6}$                                      | +1                                                   | $1/\sqrt{2}$                                         |

TABLE II: Axial-vector couplings for the pion emission.

| Process                      | $g_A$            | Process                       | $g_A$            |
|------------------------------|------------------|-------------------------------|------------------|
| $p \rightarrow n\pi^+$       | 5/3              | $\Sigma^+ \to \Lambda \pi^+$  | $-2/\sqrt{6}$    |
| $n \rightarrow p\pi^-$       | 5/3              | $\Sigma^- \to \Lambda \pi^-$  | $-2/\sqrt{6}$    |
| $n \rightarrow n \pi^0$      | $5/(3\sqrt{2})$  | $\Sigma^+ \to \Sigma^0 \pi^+$ | $4/(3\sqrt{2})$  |
| $p \rightarrow p \pi^0$      | $-5/(3\sqrt{2})$ | $\Sigma^+ \to \Sigma^+ \pi^0$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^+ \pi^-$ | $-2/\sqrt{6}$    | $\Sigma^- \to \Sigma^0 \pi^-$ | $-4/(3\sqrt{2})$ |
| $\Lambda \to \Sigma^0 \pi^0$ | $-2/\sqrt{6}$    |                               |                  |

$$\alpha_h = 305.12 \pm 0.75 \text{ MeV}$$
  
 $C_{NN\pi} = 0.843 \pm 0.001$   
 $C_{\Lambda\Sigma\pi} = 1.400 \pm 0.086$   
 $C_{\Sigma\Sigma\pi} = 1.128 \pm 0.002$ 

The SU(3) flavor symmetry parameters are strongly correlated indicating an intrinsic dynamic connection.

The partial decay widths for  $\Lambda$  and  $\Sigma^{\pm}$  pionic weak decays in unit of  $10^{-6}$  eV.

| Channels               | SU(3) | Fitting                | Experimental data |
|------------------------|-------|------------------------|-------------------|
| $\Lambda \to p\pi^-$   | 0.65  | $1.62^{+0.50}_{-0.43}$ | $1.60 \pm 0.02$   |
| $\Lambda \to n\pi^0$   | 0.35  | $0.91^{+0.28}_{-0.24}$ | $0.895 \pm 0.014$ |
| $\Sigma^+ \to p \pi^0$ | 57.32 | $5.64_{-0.17}^{+0.17}$ | $4.23 \pm 0.03$   |
| $\Sigma^+ \to n\pi^+$  | 31.22 | $2.34^{+1.05}_{-0.85}$ | $3.96 \pm 0.03$   |
| $\Sigma^- \to n\pi^-$  | 3.87  | $3.38^{+1.13}_{-0.97}$ | $4.44 \pm 0.03$   |

## Some general features:

- i) The  $\Lambda$  and  $\Sigma$  hadronic weak decays involve significant cancelations among the pole terms which is determined by the SU(3) flavor symmetry.
- ii) However, the cancellations are sensitive to the SU(3) flavor symmetry breaking, which means a coherent study of the free  $\Lambda$  and  $\Sigma$  hadronic weak decay is necessary.
- iii) Information about the short-distance behavior of the wavefunction is also crucial, but only contributes to the overall factor.

The dominance of pole contributions in the  $\Lambda$  and  $\Sigma$  hadronic weak decays has important consequence for the lifetime of light hyper-nuclei.

# Hadronic weak decay of $^{3}_{\Lambda}H$



• Pauli principle will forbid the intermediate (*nn*) to stay in the same state, which will make these two pole terms different in hyper-nucleus decays.

Wavefunctions for the light nuclei, -- anti-symmetrized in the isospin space

$$\begin{bmatrix} |{}_{\Lambda}^{3}\mathrm{H}\rangle \equiv \phi_{3_{\mathrm{H}}}^{\rho}\chi_{\frac{1}{2}}^{\lambda}\psi^{s}(\boldsymbol{R},\rho,\lambda) \\ |{}^{3}\mathrm{H}\rangle \equiv \frac{1}{\sqrt{2}}[\phi_{3_{\mathrm{H}}}^{\rho}\chi_{\frac{1}{2}}^{\lambda} - \phi_{3_{\mathrm{H}}}^{\lambda}\chi_{\frac{1}{2}}^{\rho}]\psi^{s}(\boldsymbol{R},\rho,\lambda) \\ |{}^{3}\mathrm{He}\rangle \equiv \frac{1}{\sqrt{2}}[\phi_{3_{\mathrm{He}}}^{\rho}\chi_{\frac{1}{2}}^{\lambda} - \phi_{3_{\mathrm{He}}}^{\lambda}\chi_{\frac{1}{2}}^{\rho}]\psi^{s}(\boldsymbol{R},\rho,\lambda) \end{bmatrix}$$

The spin and isospin wavefunctions are:

$$\chi^{s}(S_{z} = \frac{3}{2}) = \uparrow \uparrow \uparrow$$

$$\chi^{\rho}(S_{z} = \frac{1}{2}) = \frac{1}{\sqrt{2}}(\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow)$$

$$\chi^{\lambda}(S_{z} = \frac{1}{2}) = \frac{1}{\sqrt{6}}(2\uparrow \uparrow \downarrow - \downarrow \uparrow \uparrow - \uparrow \downarrow \uparrow)$$

$$\begin{array}{l} \phi^{\rho}_{3\,\mathrm{H}} \ = \ \frac{1}{\sqrt{2}}(pn-np)\Lambda \ , \\ \phi^{\rho}_{3\,\mathrm{H}} \ = \ \frac{1}{\sqrt{2}}(pn-np)n \ , \\ \phi^{\lambda}_{3\,\mathrm{H}} \ = \ \frac{1}{\sqrt{2}}(pn-np)n \ , \\ \phi^{\lambda}_{3\,\mathrm{H}} \ = \ \frac{1}{\sqrt{6}}(-2nnp+pnn+npn) \ , \\ \phi^{\rho}_{3\,\mathrm{He}} \ = \ \frac{1}{\sqrt{2}}(pn-np)p \ , \\ \phi^{\lambda}_{3\,\mathrm{He}} \ = \ \frac{1}{\sqrt{6}}(-2ppn+pnp+npp) \ . \end{array}$$

Spacial wavefunction:

$$\tilde{\Psi}(\mathbf{r}_{i}) = N \exp[-\frac{1}{2}\sum_{i}\beta_{i}r_{i}^{2}] \begin{bmatrix} \mathbf{R} = \sum_{i}m_{i}\mathbf{r}_{i}/\sum_{i}m_{i} = 0\\ N^{2} \equiv \pi^{-3}\Delta^{\frac{3}{2}}(m_{1}+m_{2}+m_{3})^{-3}\\ \Delta \equiv m_{3}^{2}\beta_{1}\beta_{2} + m_{2}^{2}\beta_{1}\beta_{3} + m_{1}^{2}\beta_{2}\beta_{3} \end{bmatrix}$$

Wavefunction in momentum space:

$$\Psi(\boldsymbol{p}_i) = \int \tilde{\Psi}(\boldsymbol{r}_i) \delta^3(\boldsymbol{R}) \Pi_i [\exp(-i\boldsymbol{p}_i \cdot \boldsymbol{r}_i) d^3 \boldsymbol{r}_i] \qquad (12)$$
$$= \frac{(\sum_i m_i)^3 N}{\Delta^{\frac{3}{2}}} \exp\left[\frac{\sum_{i \neq j \neq k} \beta_i (m_j \boldsymbol{p}_k - m_k \boldsymbol{p}_j)^2}{2\Delta}\right]$$

with the normalization  $\int \Psi(\boldsymbol{p}_i)^2 \delta^3(\boldsymbol{P}) \prod_{i=1}^3 d^3 \boldsymbol{p}_i = 1$ 

#### Mean square radius:

$$\langle r_i^2 \rangle = \frac{3}{2} \frac{m_j^2 \beta_k + m_k^2 \beta_j}{\Delta}$$

The r.m.s are from Juelich model and Nijmegen model, with which the HO parameters are fixed.

| System                  | $r_n(\mathrm{fm})$ | $r_p(\mathrm{fm})$ | $r_{\Lambda}(\mathrm{fm})$ |
|-------------------------|--------------------|--------------------|----------------------------|
| $^{3}\mathrm{He}$       | 1.38               | 1.49               | _                          |
| $^{3}_{\Lambda}$ H (I)  | 1.60               | 1.60               | 1.65                       |
| $^{3}_{\Lambda}$ H (II) | 2.32               | 2.32               | 2.84                       |

| $\beta_n (\mathrm{fm}^{-2})$ | $\beta_p (\mathrm{fm}^{-2})$ | $\beta_{\Lambda}({\rm fm}^{-2})$ |
|------------------------------|------------------------------|----------------------------------|
| 0.430                        | 0.573                        | _                                |
| 0.469                        | 0.469                        | 0.220                            |
| 0.296                        | 0.296                        | -0.023                           |

- H. Polinder, J. Haidenbauer and U.-G. Meisner, Phys. Lett. B 653, 29 (2007)
- J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meisner, A. Nogga and W. Weise, Nucl. Phys. A **915**, 24 (2013)
- T. A. Rijken, M. M. Nagels and Y. Yamamoto, Few Body Syst. 54, 801 (2013)

Transition matrix element for  ${}^3_{\Lambda}{
m H} \rightarrow {}^3{
m He} + \pi^-$ 



$$\mathcal{M} = \frac{1}{(2\pi)^{12}} \int \Psi_{3\text{He}}^{*}(\mathbf{P}_{f};\mathbf{p}_{1}',\mathbf{p}_{2}',\mathbf{p}_{3}') \left\{ \langle^{3}\text{He}|H_{\pi}^{(3)}|[p,n,n]^{a} \rangle \frac{i}{\not{p}_{1}-M_{1}} \frac{i}{\not{p}_{2}-M_{2}} \frac{i}{\not{p}_{3}-M_{n}} \langle [p,n,n]^{a}|H_{w}^{(3)}|_{\Lambda}^{3}\text{H} \rangle \right. \\ \left. + \langle^{3}\text{He}|H_{w}^{(3)}|[p,n,\Sigma^{+}] \rangle \frac{i}{\not{p}_{1}'-M_{1}} \frac{i}{\not{p}_{2}'-M_{2}} \frac{i}{\not{p}_{3}'-M_{\Sigma}} \langle [p,n,\Sigma^{+}]|H_{\pi}^{(3)}|_{\Lambda}^{3}\text{H} \rangle \left. \right\} \Psi_{\Lambda}^{3}\text{H}(\mathbf{P}_{i};\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}) \\ \left. \times \Delta(P_{f};q;p_{1}',p_{2}',p_{3}';P_{i};p_{1},p_{2},p_{3})dp_{1}' dp_{2}' dp_{3}' dp_{1} dp_{2} dp_{3} , \right. \\ \mathcal{M} = \int \Psi_{3\text{He}}^{*}(\mathbf{P}_{f};\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}-\mathbf{q}) \frac{(2\pi i)^{2} \langle^{3}\text{He}|H_{\pi}^{(3)}|}{M_{\Lambda}^{3}\text{H} - (M_{1}+M_{2}+M_{n}) - (\frac{\mathbf{p}_{1}^{2}}{2M_{1}} + \frac{\mathbf{p}_{2}^{2}}{2M_{2}} + \frac{\mathbf{p}_{3}^{2}}{2M_{n}})} \Psi_{\Lambda}^{3}\text{H}(\mathbf{P}_{i}=0;\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}) \\ \left. \times \delta(\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}) \frac{d\mathbf{p}_{1}}{(2\pi)^{3}} \frac{d\mathbf{p}_{2}}{(2\pi)^{3}} \frac{d\mathbf{p}_{3}}{(2\pi)^{3}} \right]$$

$$+ \int \Psi_{3_{\text{He}}}^{*}(\mathbf{P}_{f};\mathbf{p}_{1}',\mathbf{p}_{2}',\mathbf{p}_{3}') \frac{(2\pi i)^{2} \langle {}^{3}\text{He}|H_{w}^{(3)}|[p,n,\Sigma^{+}]\rangle \langle [p,n,\Sigma^{+}]|H_{\pi}^{(3)}|_{\Lambda}^{3}\text{H}\rangle}{E_{3_{\text{He}}} - (M_{1} + M_{2} + M_{\Sigma}) - (\frac{\mathbf{p}_{1}'^{2}}{2M_{1}} + \frac{\mathbf{p}_{2}'^{2}}{2M_{2}} + \frac{\mathbf{p}_{3}'^{2}}{2M_{\Sigma}})} \Psi_{\Lambda}^{3}\text{H}(\mathbf{P}_{i} = 0;\mathbf{p}_{1}',\mathbf{p}_{2}',\mathbf{p}_{3}'+\mathbf{q}) \times \delta(\mathbf{p}_{1}' + \mathbf{p}_{2}' + \mathbf{p}_{3}' - \mathbf{P}_{f}) \frac{d\mathbf{p}_{1}'}{(2\pi)^{3}} \frac{d\mathbf{p}_{2}'}{(2\pi)^{3}} \frac{d\mathbf{p}_{3}'}{(2\pi)^{3}} .$$

#### Partial width:

| $\Gamma(^{3}_{\Lambda}\mathrm{H} \rightarrow ^{3}\mathrm{He} + \pi^{-})(10^{-6}\mathrm{eV})$ | (a)  | (b)   | Total |
|----------------------------------------------------------------------------------------------|------|-------|-------|
| Jülich model                                                                                 | 3.25 | 10.75 | 2.18  |

"Lifetime" in comparison with the exp. data:

| Ref. [3]          | Ref. [2]                 | Ref. [4]                 | Ref. [5]                 | Theory       |
|-------------------|--------------------------|--------------------------|--------------------------|--------------|
| $217^{+19}_{-16}$ | $183^{+42}_{-32} \pm 37$ | $181^{+54}_{-39} \pm 33$ | $155^{+25}_{-22} \pm 29$ | $200 \pm 23$ |

Sensitivity of the pole term cancellation mechanism to the nuclear model:



Other channels, e.g.  ${}^{3}_{\Lambda}H \rightarrow \pi^{-} + d + p, \pi^{-} + 2p + n, \pi^{0} + d + n, \pi^{0} + p + 2n$ , will further contribute to the partial width and further shorten the lifetime.

# **Brief summary**

- The presence of Pauli blocking plays a unique role in light hypernucleus weak decays and can explain the fastened lifetime of  ${}^3_{\Lambda}H$ .
- More realistic nuclear wavefunctions are needed for quantitative calculations in the future.

# Thanks for your attention!



# World Data



\* The same method is applied for calculation of STAR free  $\Lambda$  lifetime.



10



## Lifetime of neutron: 880 sec.

$$n \rightarrow p + e^- + \overline{v}_e$$

**M**p= 938.27 MeV

**M**n= 939.56 MeV

Mp+Mn= 1877.83 MeV

**M**d= 1875.61 MeV



Neutron becomes stable inside the deuteron since the binding energy is larger than the excess energy.