

A plan to search for a tetraneutron state in the ⁴He(π^-,π^+) reaction at J-PARC

Hiroyuki FUJIOKA, Kyoto Univ.

Hiroyuki Fujioka (Kyoto Univ.)

today's talk based on ...

Letter of Intent for J-PARC $50\,{\rm GeV}$ Synchrotron

Search for tetraneutron by pion double charge exchange reaction on ⁴He

H. Fujioka,* S. Kanatsuki, T. Nagae, and T. Nanamura Department of Physics, Kyoto University

> T. Fukuda and T. Harada Osaka Electro-Communication University

E. Hiyama, K. Itahashi,[†] and T. Nishi *RIKEN Nishina Center* (Dated: June 27, 2016)

Candidates of a tetraneutron resonance state, composed of four neutrons, have been observed in a heavy-ion double charge exchange reaction at RIBF. We would like to investigate this exotic state by a pion double charge exchange reaction at the High-Intensity High-Resolution beamline in an extended Hadron Experimental Facility, which is currently in a planning stage.

http://j-parc.jp/researcher/Hadron/en/pac_1607/pdf/LoI_2016-18.pdf

motivated by ...

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

PRL 116, 052501 (2016)

week ending 5 FEBRUARY 2016

G

Candidate Resonant Tetraneutron State Populated by the ⁴He(⁸He,⁸Be) Reaction

K. Kisamori,^{1,2} S. Shimoura,¹ H. Miya,^{1,2} S. Michimasa,¹ S. Ota,¹ M. Assie,³ H. Baba,² T. Baba,⁴ D. Beaumel,^{2,3}
M. Dozono,² T. Fujii,^{1,2} N. Fukuda,² S. Go,^{1,2} F. Hammache,³ E. Ideguchi,⁵ N. Inabe,² M. Itoh,⁶ D. Kameda,² S. Kawase,¹ T. Kawabata,⁴ M. Kobayashi,¹ Y. Kondo,^{7,2} T. Kubo,² Y. Kubota,^{1,2} M. Kurata-Nishimura,² C. S. Lee,^{1,2} Y. Maeda,⁸ H. Matsubara,¹² K. Miki,⁵ T. Nishi,^{9,2} S. Noji,¹⁰ S. Sakaguchi,^{11,2} H. Sakai,² Y. Sasamoto,¹ M. Sasano,² H. Sato,² Y. Shimizu,² A. Stolz,¹⁰ H. Suzuki,² M. Takaki,¹ H. Takeda,² S. Takeuchi,² A. Tamii,⁵ L. Tang,¹ H. Tokieda,¹ M. Tsumura,⁴ T. Uesaka,² K. Yako,¹ Y. Yanagisawa,² R. Yokoyama,¹ and K. Yoshida²

Hiroyuki Fujioka (Kyoto Univ.)

Today's talk

We propose to investigate

pion DCX (= **D**ouble **C**harge e**X**change) reaction

$$\pi^- + {}^4\mathrm{He} \rightarrow \pi^+ + {}^4\mathrm{n}$$

T=850 *MeV* at J-PARC. (~ 980 *MeV/c*)

Brief history of pion DCX reaction (until 1980's)
 Proposed experiments at J-PARC

(a) analog transition: ${}^{18}O \rightarrow {}^{18}Ne$

(b) non-analog transition: ${}^{4}\text{He} \rightarrow {}^{4}\text{n}$

constraint on tetraneutron

- ♦ ⁸He→⁴He+⁴n forbidden
 ⇒ B.E.(⁴n)<3.1MeV</p>
- ♦ ⁶He+2n dominance in ⁸He break-up ⇒ B.E.(⁴n)<1MeV</p>
- ♦ unbound ⁵H (→³H+2n)
 ⇒ bound ⁴n unlikely

candidates of <u>resonant</u> tetraneutron

K. Kisamori et al., PRL 116, 052501 (2016)

significance: 4.9 σ (incl. look-elsewhere effect) energy: 0.83±0.65±1.25 MeV width : <2.6MeV (FWHM) above 4n threshold (or not)?

ab-initio 4N calculation

HI DCX and pion DCX

1. Brief history of pion DCX reaction

$$\pi^- + {}^4\text{He} \rightarrow \pi^+ + {}^4\text{n}$$

the same reaction but at low energies, different angles **170-215MeV** ($T_{\pi+}$ fixed), 0°

Hiroyuki Fujioka (Kyoto Univ.)

the same reaction but at low energies, different angles 140 MeV, 20°

dσ/dΩ<(0.138±0.069) nb/sr

17

L. Kaufman et al. Physics Letters B 25, 536 (1967)

caution: the cross section was underestimated by a factor of 100

A. Stetz et al., Phys. Rev. Lett. 47, 782 (1981)

$$\pi^- + {}^4\mathrm{He} \rightarrow \pi^+ + {}^4\mathrm{n}$$

the same reaction but at low energies, different angles

$$\pi^- + {}^4\mathrm{He} \to \pi^+ + {}^4\mathrm{n}$$

the same reaction but at low energies, different angles

<u>80 MeV, 50°-130°</u>

DCX measurements other than ⁴He \rightarrow ⁴n

Some examples...

Hiroyuki Fujioka (Kyoto Univ.)

Some examples...

Pion DCX reaction in light nuclei

$\frac{15}{15} \text{Ne} \frac{16}{15} \text{Ne} \frac{17}{15} \text{Ne} \frac{18}{15} $	²¹ Ne					
		Ne				
in pion DCX reaction 14F 15F 16F 17F 18F 19F	²⁰ F	⁾ F ²¹ F				
¹² O ¹³ O ¹⁴ O ¹⁵ O ¹⁶ O ¹⁷ O ¹⁸ O	¹⁹ O	200				
¹⁰ N ¹¹ N ¹² N ¹³ N ¹⁴ N ¹⁵ N ¹⁶ N ¹⁷ N	¹⁸ N	³ N ¹⁹ N				
⁸ C ⁹ C ¹⁰ C ¹¹ C ¹² C ¹³ C ¹⁴ C ¹⁵ C ¹⁶ C	¹⁷ C	′C ¹⁸ C				
⁷ B ⁸ B ⁹ B ¹⁰ B ¹¹ B ¹² B ¹³ B ¹⁴ B ¹⁵ B	¹⁶ B	B ¹⁷ B				
⁶ Be ⁷ Be ⁸ Be ⁹ Be ¹⁰ Be ¹¹ Be ¹² Be ¹³ Be ¹⁴ Be	¹⁵ Be	Be ¹⁶ Be				
⁴ Li ⁵ Li ⁶ Li ⁷ Li ⁸ Li ⁹ Li ¹⁰ Li ¹¹ Li ¹² Li ¹³ Li						
³ He ⁴ He ⁵ He ⁶ He ⁷ He ⁸ He ⁹ He ¹⁰ He disac	dvai	antac				
¹ H ² H ³ H ⁴ H ⁵ H ⁶ H ⁷ H only (N,Z) \rightarrow (N	only $(N,Z) \rightarrow (N\pm 2, Z\mp 2)$ pose					
¹ n ³ n? ⁴ n? \Rightarrow activities in	n RI-	RI-bea				

Pion DCX reaction in light nuclei

accessible / observed			¹⁵ Ne	¹⁶ Ne	¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne				
in pion DCX reaction			¹⁴ F	¹⁵ F	¹⁶ F	¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F				
¹² O			¹³ O	¹⁴ O	¹⁵ O	¹⁶ O	¹⁷ O	¹⁸ O	¹⁹ O	²⁰ O				
			¹⁰ N	¹¹ N	¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N		
		⁸ C	⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C		
		⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	¹² B	¹³ B	¹⁴ B	¹⁵ B	¹⁶ B	¹⁷ B		
		⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be	¹³ Be	¹⁴ Be	¹⁵ Be	¹⁶ Be		
	⁴ Li	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	¹⁰ Li	¹¹ Li	¹² Li	¹³ Li				
	³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He	¹⁰ He	no	RI-I	RI-beam of nuclides			
¹ H	² H	³ Н	⁴ H	⁵ H	⁶ H	⁷ H			beyond drip line !					
¹ n ³ n? ⁴ n? pion DCX reaction								ons (again)?						

Case for Hydrogen-7

20

Case for Hydrogen-7

1: t+n+n+n (five-body) 2: t+²n+²n (three-body) 3: t+⁴n (two-body)

Despite the low number of accumulated statistics, some remarkable features inherent to the missing-mass spectrum in Fig. 3(c) should be noted. No clear evidence for a ⁷H peak is seen at low energies; however, close to $E_{t+4n} = 0$ MeV, the experimental spectrum is much steeper than that of Curve 2, which is an extreme case. Furthermore, below 5 MeV, the spectrum exhibits a "shoulder" centered at ~ 2 MeV. One could say that the low-energy part of the spectrum looks similar to that of Curve 3, which assumes the existence of a hypothetical quasibound tetraneutron. However, the explanation of a peculiar threshold behavior in the missing-mass spectrum of ⁷H seems unrealistic due to the lack of any reliable experimental proofs, suggesting that any bound or narrow quasibound 4n state exists. Modern theoretical approaches [18,19] do not predict a 4nnucleus either. Therefore, it is justified to regard the observed shape of the experimental spectrum near the t + 4n threshold as an indication of a ⁷H state. The reaction cross section of the ⁷H production in the low-energy region is determined to be $\sim 5 \,\mu b/sr$ per unit count in the spectrum within the angular range of $\simeq 6^{\circ} - 14^{\circ}$ in the center-of-mass system.

E. Y. Nikol'Skiĭ et al., Phys. Rev. C 81, 064606 (2010)

Case for Hydrogen-7

22

2. Proposed experiments at J-PARC

J-PARC Japan Proton Accelerator Research Complex

GeV333µA

~500m

100Me

al

er experiments

Hadron

MLSF

CRCS

50GeV-PS $15\mu A, 750kW$ Bird's eye photo in July 2009

V to

P. S. S. S.

SK

"International workshop on physics at the extended hadron experimental facility of J-PARC"

HIHR Line J-PARC ExHH

Intensity: ~ 1.8x10⁸ pion/pulse (1.2 GeV/c, 58 m, 1.4msr*%, 100kW, 6s spill, Pt 60mm) ∆p/p ~ 1/10000

26

H. Noumi, "International workshop on physics at the extended hadron experimental facility of J-PARC"

- If the ⁴n peak is confirmed in the latest SHARAQ/RIBF experiment...
 - phase-1: analog transition of ¹⁸O→¹⁸Ne_{g.s.} (DIAS) at the existing K1.8 beamline
 - ▶ phase-2: non-analog transition of ⁴He→⁴n at the HIHR beamline
 - high intensity and high resolution with dispersion matching technique

Two Letters of Intent submitted

Letter of Intent for J-PARC $50\,{\rm GeV}$ Synchrotron

Letter of Intent for J-PARC $50\,{\rm GeV}$ Synchrotron

Investigation of Pion Double Charge Exchange Reaction with S-2S Spectrometer

H. Fujioka,* S. Kanatsuki, T. Nagae, and T. Nanamura Department of Physics, Kyoto University

> T. Fukuda and T. Harada Osaka Electro-Communication University

E. Hiyama, K. Itahashi, and T. Nishi *RIKEN Nishina Center* (Dated: June 27, 2016)

We will study pion double charge exchange (π^{\pm}, π^{\mp}) reactions with approximately 850 MeV (980 MeV/c) π beams at J-PARC. The ultimate goal is to search for a tetraneutron resonance state (⁴n), whose candidates have been observed in the ⁴He(⁸He, ⁸Be) reaction at RIBF. First of all, an analog transition, the ¹⁸O(π^+, π^-)¹⁸Ne (g.s.) reaction, will be investigated at the existing K1.8 beamline with the S-2S spectrometer. It will be an important step toward a non-analog transition, the ⁴He(π^-, π^+)⁴n reaction, with much smaller cross section.

http://j-parc.jp/researcher/Hadron/en/pac_1607/pdf/LoI_2016-18.pdf
http://j-parc.jp/researcher/Hadron/en/pac_1607/pdf/LoI_2016-19.pdf

E (MeVj **Pion DCX far above Δ region** 29 available data < 550MeV (LAMPF) theory 25 ¹⁸O(π⁺,π⁻)¹⁸Ne 10¹ non-analog 20 15 10[°] /Sr) 10

16

analog

0 difference

 $O_a = -34.58(10) MeV$

M.E.=40.94(10)MeV

8

2

80

⁹Be(¹⁴C,¹⁴O)⁹He

337 MeV

4.6°-6.4°

(7.9)

MISSING MASS (MeV)

6

O

5

30

25

20

15

Counts

- 8

E. Oset and D. Strottman, PRL 70, 146 (1993) *)*93) ⁻ujioka (Kyoto Univ.)

 $0 = 0 \left(\frac{Up}{Dp} \right)^{-1}$

10⁻²

10⁻³

200

500

spd

spdfgh

800

T $_{\pi}$ (MeV)

spdfg

1100

1400

spdf

Pion DCX in the third resonance region

30

Pion DCX in the third resonance region

"PILAC Users Group Report on the Physics with PILAC" (1991)

31

32

			_			
Reaction	$q \; ({ m MeV}/c)$	Q-value (MeV)		10/RIBH		
4 He(8 He, 8 Be) ^a	14.2	-3.2	-SHAN			
${}^{4}\text{He}(\pi^{-},\pi^{+})^{b}$	130.7 - 266.3	-30.9		c ta ann	(le to	
$^{4}\mathrm{He}(\pi^{-},\pi^{+})^{\mathrm{c}}$	35.5	-30.9			ngeeta	••
$^{4}\text{He}(\pi^{-},\pi^{+})^{d}$	32.9	-30.9		Ellnar		
${}^{4}\mathrm{He}(\pi^{-},\pi^{+})^{\mathrm{e}}$	31.7	-30.9	-	(onyar	et al.)	
${}^{4}\text{He}(\pi^{-},\pi^{+})^{f}$	31.3	-30.9	₌ ← J-PARO			
^a Same condition as	in Ref. [1]		-			
^b $T_{\pi^-} = 80 \text{ MeV} (p_{\pi} \text{ condition as in Ref}$	$_{-} = 170 \text{ MeV}/c$) and θ_{π}	$_{+} = 50^{\circ} - 130^{\circ}$. Same				
^c $T_{\pi^-} = 165 \mathrm{MeV} (p)$	$\pi^{-} = 271 \mathrm{MeV}/c$). Sam		π^- energy	intensity		
Ref. [20]			LAMPE [20]	$165 \mathrm{MeV}$	10^6 /sec	•
^a $T_{\pi^{-}} = 300 \mathrm{MeV} (p)$	$_{\pi^{-}} = 417 \mathrm{MeV}/c)$					•

$$T_{\pi^{-}} = 550 \,\mathrm{MeV} \, (p_{\pi^{-}} = 675 \,\mathrm{MeV}/c)$$

^f $T_{\pi^-} = 850 \,\text{MeV} \ (p_{\pi^-} = 980 \,\text{MeV}/c)$ (to be proposed in the letter of intent)

 $\begin{array}{c|cccc} \pi^{-} \mbox{ energy intensity } \pi^{+} \mbox{ acceptance } \\ \hline {\rm LAMPF~[20]} & 165 \, {\rm MeV} & 10^{6}/{\rm sec} & 25 \, {\rm msr} \\ {\rm TRIUMF~[21]} & 80 \, {\rm MeV} & 2 \times 10^{6}/{\rm sec} & \sim 2\pi \, {\rm sr} \\ {\rm J-PARC~HIHR} & 850 \, {\rm MeV} & 2.7 \times 10^{7}/{\rm sec}^{\rm a} & \sim 10 \, {\rm msr} \end{array}$

^a averaged per spill (6 sec).

♦ With 2 g/cm² liquid ⁴He target, formation cross section 1nb/sr \Rightarrow 97 events in 2 weeks

http://j-parc.jp/researcher/Hadron/en/pac_1607/pdf/LoI_2016-18.pdf

Concept of Phase-1 experiment

33

- * analog transition: $\pi^-+{}^{18}O \rightarrow \pi^++{}^{18}Ne_{g.s.}$
 - target: ¹⁸O-enriched water
 - spectrometer: K1.8 beamline + S-2S spectrometer (under construction) *T. Nagae et al. Spectroscopy of \Xi-hypernuclei with the {}^{12}C(K^-,K^+){}^{12}_{\Xi}Be reaction*
 - 400 counts per day expected (with 10⁷ π⁺/spill beam impinging on 2 g/cm² H₂¹⁸O target)
 - to establish a method of pion DCX measurement
- beam-energy scan? comparison with non-analog transition (¹⁶O, ¹²C, ...)?

- ♦ e⁺/π⁺ separation will be very important.
 - no detector installed for this purpose at present
 (ToF/ΔE doesn't help because of high momentum.)
 - Lead glass Cherenkov counters as a promising candidate
- * $\pi^- \rightarrow \pi^0$: single charge exchange on target
 - $\pi^0 \rightarrow 2\gamma$: instantaneous decay

 $\gamma \rightarrow e^+e^-$: pair creation (near the target) The momentum of positrons can be inside the region of interest (around the 4n threshold in DCX reaction).

♦ In-flight decay of π will be insignificant.

Relevance to hypernuclear physics

neutron-rich Λ -hypernuclei produced in (π^-, K^+) DCX reaction

Comparison between experimental data and theoretical calculations

T. Harada et al., Phys. Rev. C 79, 014603 (2009)

35

R. Honda, et al., arXiv:1703.00623

We expect to achieve a comparable sensitivity in the (π^-,π^+) measurement

Conclusion

- Candidate events of a resonant tetraneutron state were recently observed at SHARAQ/RIBF.
- Pion DCX reaction was utilized for populating neutron(proton)-rich nuclides.
- We propose to investigate a pion DCX reaction at J-PARC in search of tetraneutron (and ⁷H, ⁹He, trineutron).
 - at much higher energy (850MeV) than in past experiments (<200MeV)
 - starting from analog-transition measurement with a ¹⁸O target, because of its large cross section.