Quark matter in compact stars: implication from recent observations

Xia Cheng-Jun (夏铖君)

Ningbo Institute of Technology,

Zhejiang University

Collaborators:

Togashi Hajime, Hiyama Emiko, **Zhao En-Guang**, Zhou Shan-Gui

SNP2017@O.E.C.U.

March 14th, 2017

Experimental constraint:

Pulsars:

- 2. the cyclotron resonance features in the X-Ray spectrum of pulsars → surface magnetic field @ [Revnivtsev_Mereghetti2014_SpaceSciRev0 14-1]
- 3. photon spectrum of pulsars → surface temperature [Page2006_NPA777-497, Ho_Heinke 2009_Nature462-71], mass-radius probability [Steiner_Lattimer _Brown2010_ApJ722-33, Guillot_Servillat _Webb_Rutledge2013_ApJ772-7, Ozel_Freire2016_AnnuRevAstro54-401...]
- 4. orbital motion of a binary system → precise mass measurement [Demorest et al. 2010_Nature467-1081, Antoniadis et al. 2013_Science340-6131, ...]
- 5. gravitational waves emitted from the merger of binary compact stars → EoS [LIGO2009_RepProgPhys72-076901, Hotokezaka et al.2011_PRD83-124008...]

Baryonic matter

Shen EoS2&3: RMF model with the effective interaction TM1 and Λ -meson coupling determined by [Shen_Toki_Oyamatsu_Sumiyoshi2011_ApJ197-20]: $M_{\Lambda} = 1115.7 \text{ MeV}, g_{\omega}^{\Lambda}/g_{\omega} = 2/3, \text{ and } g_{\sigma}^{\Lambda}/g_{\sigma} = 0.621.$ Sugahara_Toki1994_NPA579-557 1. the saturation densit ρ_0 (fm⁻³) 0. 145 2. the energy: E/A (MeV) -16. 3 3. the incompressibility (MeV) 281 4. the symmetry energy: a_{sym} (MeV) 36. 9

VM EoS: Cluster variational method with the potential AV18 + UIX [Togashi_Hiyama_Yamamoto_Takano2016_PRC93-035808, Togashi_ Nakazato_Takehara_Yamamuro_Suzuki_Takano2017_NPA961-78]:

1.	t he	saturation	$densit ho_0$ (fm ⁻³)	0.160
2.	the	energy:	E/A (MeV)	-16.1
3.	the	incompress	ibility k (MeV)	245
4.	the	symmetry e	nergy: a_{sym} (MeV)	30.0

Baryon Stars

Dashed curves: The EoSs of nuclear matter are obtained based on the non-relativistic G-matrix approach.

APR: without hyperons [Akmal_Pandharipande_Ravenhall1998_PRC58-1804];

AV18+TBF: obtained with the realistic nucleon-nucleon interaction AV18, the Urbana three nucleon interaction and the Nijmegen softcore nucleon-hyperon potential [Baldo_Burgio_Schulze2000_PRC61-055801]; TNI2u: considering three hyperon interaction [Takatsuka_Nishizaki_Yamamoto_Tamagaki2006_PTP115-355];

Quark matter

[Fragaa Romatschke 2005 PRD7d 105014] tial density up to

with
$$\omega_i^{\text{pt}} = \sum_{i=1}^{\infty} \left(\omega_i^0 + \omega_i^1 \alpha_s \right)$$

with $\omega_i^0 = -\frac{g_i m_i^4}{24\pi^2} \left[u_i v_i \left(u_i^2 - \frac{5}{2} \right) + \frac{3}{2} \ln(u_i + v_i) \right],$
 $\omega_i^1 = \frac{g_i m_i^4}{12\pi^3} \left\{ \left[6 \ln \left(\frac{\bar{\Lambda}}{m_i} \right) + 4 \right] \left[u_i v_i - \ln(u_i + v_i) \right] + 3 \left[u_i v_i - \ln(u_i + v_i) \right]^2 - 2v_i^4 \right\}.$
Here we have defined $u_i = \mu_i / m_i$ and $v_i = \sqrt{u_i^2 - 1}.$
 $\alpha_s(\bar{\Lambda}) = \frac{1}{\beta_0 L} \left(1 - \frac{\beta_1 \ln L}{\beta_0^2 L} \right),$ where $L = 2 \ln \left(\frac{\bar{\Lambda}}{\Lambda_{\text{MS}}} \right)$ and $\Lambda_{\overline{\text{MS}}}$ is $m_i(\bar{\Lambda}) = \hat{m}_i \alpha_s^{\frac{\gamma_0}{\beta_0}} \left[1 + \left(\frac{\gamma_1}{\beta_0} - \frac{\beta_1 \gamma_0}{\beta_0^2} \right) \alpha_s \right],$ the $\overline{\text{MS}}$ renormalization point.
The renormalization scale $= \frac{C}{3} \sum_{i=u,d,s} \mu_i$
with $C = 1 \sim 4.$
 $\Lambda_{\overline{\text{MS}}} = 376.9 \text{ MeV}, \ \hat{m}_u = 3.8 \text{ MeV}, \ \hat{m}_d = 8 \text{ MeV}, \text{ and } \hat{m}_s = 158 \text{ MeV}.$

Non-perturbative corrections

at µ

We introduce an extra bag constant B to take into account the energy difference between the physical and perturbative vacua:

$$\Omega = \Omega^{\rm pt} + B$$

The QCD sum-rule result predicts [Shuryak1978_PLB79-135]:

$$B = -\frac{1}{4} \langle T^{\mu}_{\mu} \rangle = \frac{11 - \frac{2}{3}N_f}{32} \frac{\alpha_s}{\pi} \langle G^{\mu\nu}_a G_{a\mu\nu} \rangle - \frac{1}{4} \sum_f m_f \langle \bar{q}_f q_f \rangle$$

$$\approx 455 \text{ MeV/fm}^3$$

Equating the pressures of QGP ($-B + 37 \frac{\pi^2}{90} T^4$) and pion gas ($\frac{\pi^2}{30} T^4$)
at $\mu = 0$ and $T = T_c$ (~170 MeV), one have:
 $B \simeq 400 \text{ MeV/fm}^3$
On the other hand, fits to light hadron spectra suggest:
 $B \simeq 50 \text{ MeV/fm}^3$

Gaussian parametrization for the bag constant **B**:

$$B = B_{\rm QCD} + (B_0 - B_{\rm QCD}) \exp\left[-\left(\frac{\sum_i \mu_i - m_{\Lambda}}{2\Lambda_{\overline{\rm MS}}}\right)^2\right],$$

where $B_0 = 50 \text{ MeV fm}^{-3}, B_{\rm QCD} = 400 \text{ MeV fm}^{-3}.$

Bag constant [Maieron et al.2004_PRD70-043010]

Hadron-quark mixed phase inside compact stars

First-order phase transition [Masuda_Hatsuda_Takatsuka2016_EPJA52-65]

Baryon density (p)

- σ = 0: point-like hadronic matter (HM) and strange quark matter (SQM), i.e., Gibbs construction.
- Moderate σ : geometrical structures [Chiba, Endo, Heiselberg, Maruyama, Tatsumi, Voskresensky, Yasuhira, Yasutake, ...]
 From Guo-yun Shao's talk:
- Large σ: the quark-hadron interface becomes planar, i.e., Maxwell construction.

Unif Q

Construct the mixed phase

The total volume occupied by the mixed phase is V, where the volume occupied by the quark phase is V_q . Then we can define the quark fraction: $\chi = V_q/V$.

The thermodynamic quantities for the mixed phase:

Baryon number density $n_t = (1 - \chi)n_B + \chi n_q$, Energy density $E_t = (1 - \chi)(E_B + E_l^B) + \chi(E_q + E_l^q)$.

By minimizing the total energy density E_t , we obtain the phase equilibrium conditions:

$$\mu_n = \mu_u + 2\mu_d, \quad P_B = P_q.$$

Maxwell

Local charge neutrality
$$Q_B = n_l^B \text{ and } Q_q = n_l^q.$$

Gibbs

Global charge neutrality
$$n_l = (1 - \chi)Q_B + \chi Q_q.$$

$$\mu_e^B = \mu_e^q$$

Note: the β -equilibrium condition is fulfilled.

The phase transition in compact stars

Mass, radius, and central density

Summary

The compact stars with possible existence of hyperonic matter and quark matter were investigated. It was found that:

- The first-order deconfinement phase transition does not always reduce the maximum mass of compact stars;
- 2 Massive neutron stars may consist of multilayers baryonic matter, quark matter and their mixed phases;
- ③ The existence of quark matter in compact stars reduces their radii, which are more consistent with the recent observations [R = 10-11.5 km at $M \approx 1.17-2 M_{\odot}$, Ozel_Freire2016_AnnuRevAstro54-401];

Thank you!!!