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First step in a long journey



Outline
✤ Introduction 

• Why nuclear force (baryon-baryon interactions); Current status (of 
chiral forces) 

• Why  relativistic? atomic/molecular; nuclear; one-baryon 
sector 

✤ Our strategy and some leading order results  

- Nucleon-nucleon (NN) 

- Hyperon-nucleon (YN) 

✤ Summary and outlook



Motivation: why nuclear force



Four (established) forces in nature

Evidence for a Protophobic Fifth Force from 8Be Nuclear Transitions,1604.07411  

http://arxiv.org/abs/arXiv:1604.07411


Strong force

• Strong force: bind quarks 
into hadrons 

• Nuclear force—residual 
strong force: binds 
nucleons into nuclei 

• Underlying theory—QCD

2 quark masses and 1 universal coupling



QCD：Asymptotic freedom

PDG2015



QCD： color confinement

• Free quarks do not exist (color confinement),  
experimentally only hadrons are observed 

• Mismatch of degrees of freedom—
hadronization

Decomposition of 
the proton spin



Why construct nuclear forces?

• Nuclear force: derivative force or residual force 

• In this sense,  similar to intermolecular force, 
but because of confinement and asymptotic 
freedom of QCD, much richer and harder 

                               Fan Wang, Guang-han Wu, Li-jian Teng, J.Terrance Goldman Phys.Rev.Lett. 69 (1992) 2901-2904  

• Constructing a nuclear force is a long-standing 
and interesting subject in nuclear physics; the 
basis of all microscopic (ab initio) nuclear 
structure and reaction theories



“High Precision” Nuclear Force

“On the interaction of elementary particles,” PTP17,48



Major milestones for NN potential 
development ChPT

• 1991/92: Weinberg, NN potential from ChPT 

• 1994/96:  Bira v. Kolck and co-workers, first ChPT based 
NN potential at N2LO using cutoff regularization (r-
space)  

• 1994-1997: 

-  Robilotta and co-workers, 2-pi at N2LO 

-  1997: Kaiser et al., 2-pi at N2LO using HBChPT and DR  

• 2000: Epelbaum et al. (“Bochum-Juelich” group), NN 
potential in momentum space at N2LO (HBChPT, DR) 

• 2003:  

- Robilotta and co-workers 2-pi at N3LO in RBChPT 

- Entem & Machleidt (“Idaho” group), first NN potential 
at N3LO         (HBChPT, DR) 

• 2005: Epelbaum et al. (“Bochum-Juelich” group), NN 
potential at N3LO (HBChPT, SFR) 

• 2015: Epelbaum et al., Entem, et al.,  NN potential at 
N4LO

High 
Precision 
Nuclear  
Force



Estimate of theoretical uncertainties

• E. Epelbaum, H. Krebs, and U.-G. Meissner, Eur. Phys. J. A (2015)51



Hierarchy of Bare Nuclear Force in ChEFT
R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75 15

Fig. 1. Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots, solid squares, and solid
diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are given in the text.

forces (4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF, 4NF are
weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known fact that 2NF� 3NF� 4NF
. . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT development of
the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking about the various pion-exchange
contributions.

4.1. Pion-exchange contributions in ChPT

Based upon the effective pion Lagrangians of Section 2.2, we will now derive the pion-exchange contributions to the NN
interaction order by order.

As noted before, there are infinitely many pion-exchange contributions to the NN interaction and, thus, we need to get
organized. First, we arrange the various pion-exchange contributions according to the number of pions being exchanged
between the two nucleons:

V⇡ = V1⇡ + V2⇡ + V3⇡ + · · · , (4.1)
where the meaning of the subscripts is obvious and the ellipsis represents 4⇡ and higher pion exchanges. Second, for each
of the above terms, we assume a low-momentum expansion:

V1⇡ = V (0)
1⇡ + V (2)

1⇡ + V (3)
1⇡ + V (4)

1⇡ + · · · (4.2)

V2⇡ = V (2)
2⇡ + V (3)

2⇡ + V (4)
2⇡ + · · · (4.3)

V3⇡ = V (4)
3⇡ + · · · , (4.4)

where the superscript denotes the order ⌫ and the ellipses stand for contributions of fifth and higher orders. Due to parity
and time reversal, there are no first order contributions. Moreover, since n pions create L = n � 1 loops, the leading order
for n-pion exchange occurs at ⌫ = 2n � 2 [cf. Eq. (3.5)].

In the following subsections, we will discuss V1⇡ , V2⇡ , and V3⇡ , one by one and order by order.

• E. Epelbaum, H.-W. Hammer, Ulf-G. Meissner, Reviews of Modern Physics 
81(2009)1773

• R. Machleidt and D. R. Entem, Physics Reports 503(2011)1

many body < few body



Nonrelativistic NF from heavy baryon (HB) 
ChEFT

•NN interaction  
-up to NLO U. van Kolck et al., PRL, PRC1992-94; N. Kaiser, NPA1997   

-up to NNLO E. Epelbaum, et al.,NPA2000; U. van Kolck et al.,PRC1994 

-up to N3LO  R. Machleidt et al., PRC2003; E. Epelbaum et al., NPA2005   

-up to N4LO E. Epelbaum et al., PRL2015, D.R. Entem, et al., PRC2015  

-dominant N5LO terms  D.R. Entem, et al., PRC2015  

•3N interaction  
-up to NNLO  U. van Kolck, PRC1994 

-up to N3LO  S. Ishikwas, et al, PRC2007; V. Bernard et al, PRC2007;  

-up to N4LO  H. Krebs, et al., PRC2012-13 

•4N interaction  
-up to N3LO  E. Epelbaum, PLB 2006, EPJA 2007 



Number of parameters in Modern 
Nuclear Forces

ChEFT [5]
PWA93 

[1]
Reid93 

[2]
AV18 

[3]

CD-
Bonn 

[4]
LO NLO NNLO N3LO N4LO

No. of 
LECs

35 50 40 38 2 9 9 24 24

χ2/
datum 1.07 1.03 1.09 1.02 480 63 21 0.7 0.3

[1] V.G.J. Stocks et al., PRC48, 792(1993)—Inspire cited 637 times 
[2] V.G.J. Stocks et al., PRC49, 2950(1994)—Inspire cited 1054 times 
[3] Robert B. Wiringa et al, PRC51, 38(1995)—Inspire cited 1975 times 
[4] R. Machleidt, PRC63,024001(2001)—Inspire cited 1050 times 
[5] PRL 115,122301(2015)—Inspire cited 58

caution about definition of x2



Nuclear Force from Quark-Gluon dofs

N. Ishii et al., PRL99,022001(2007)

Nature Research Highlights 2007

• First qualitative 
nuclear force from 
first principles 

• mπ=461 MeV 
• Quenched



The ultimate aim:  
nuclear physics as a precision science

for the development 
of multiscale 
models for complex 
chemical systems

Nuclear force+advanced numerical methods 
= 

precision nuclear physics



Two recent examples 
Hoyle state of Carbon



Two recent examples 
alpha-alpha scattering

Nature 16067



Limitations of Current ChPT NN forces

• Not “renormalization group invariant” 

- Sensitive to the UV cutoff, not (non-perturbatively) 
renormalizable 

- Diverse opinion on this issue ( Bira Van Kolck et al.) 

• Based on HBChPT 

- Slow convergence as in the one-baryon sector? 

- Cannot be used directly in covariant calculations. 

• A relativistic nuclear force based on the EOMS 
BChPT more relativistic nuclear studies?

D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk,  Phys. Rev. C92, 064001 (2015). 



Motivation: why relativistic



Importance of Relativity not so much 
recognized

• Two pillars of modern physics:  

✓ Quantum mechanics 

✓ Special relativity

S.L.Glashow, 1988, Interactions, Wamer Books, New York  

Modern elementary-particle physics is founded 
upon the two pillars of quantum mechanics and 
relativity. ……Thus it is that a satisfactory 
description of the atom can be obtained without 
Einstein's revolutionary theory. 



Relativistic effects 
in a nutshell

• Kinematical effects 
- Length contraction, time dilation, …  

• Dynamical effects

- Spin degree of freedom
- Antiparticles
- Small components



Atomic/Molecular systems
relativistic quantum chemistry



Relativistic corrections in  
heavy Atoms

Relativistic Electronic Structure Theory, P. Schwerdtfeger 



Nuclear (multi-nucleon) Systems



CDFT: a short summary

from Jie Meng’s talk



Two nice books



One-Baryon Sector

• Masses
• Magnetic 

moments
• axial and 

vector form 
factors

A covariant formulation of BChPT is essential



Chiral Perturbation Theory (ChPT) 

• Maps quark (u, d, s) dof’s to those of the asymptotic 
states, hadrons 

• Perturbative formulation of low energy QCD in powers 
of the external momenta and the light quark masses, by 
utilizing chiral symmetry and its breaking pattern

• 1979, Weinberg 
• 1989, to the one-baryon sector, Gasser & Leutwyler 
• 1990/91, to NN, Weinberg

ChPT: a low energy effective field theory of QCD

Development (trilogy)



• ChPT  very successful in the study of Nanbu-Goldstone boson self-
interactions. (at least in SU(2)) 

• In the one-baryon sector, things become problematic because of the 
nonzero (large) baryon mass in the chiral limit,  which leads to the fact 
that high-order loops contribute to lower-order results, i.e., a systematic 
power counting is lost!

Power-counting-breaking (PCB)

Chiral order =

red dots denote 
possible  
PCB terms (pion-
nucleon scattering) 

J. Gasser et al., 
NPB 307, 779(1988)



HB vs. Infrared vs. EOMS (fully covariant)

• Heavy baryon (HB) ChPT 
- non-relativistic 
- breaks analyticity of loop amplitudes 
- converges slowly (particularly in three-flavor sector) 
- strict PC and simple nonanalytical results 

• Infrared BChPT 
- breaks analyticity of loop amplitudes  
- converges slowly (particularly in three-flavor sector) 
- analytical terms the same as HBChPT 

• Extended-on-mass-shell (EOMS) BChPT 
- satisfies all symmetry and analyticity constraints 
- converges relatively faster--an appealing feature



The nucleon scalar form factor at q3

EOMS(IR)

HB

t=4 mП
2

S. Scherer, Prog.Part.Nucl.Phys.64:1-60,2010

Figure 17: Contributions to the nucleon self energy at O(q4). The number n in the interaction blobs

refers to L(n)
πN . The Lagrangian L(2)

πN does not produce a contribution to the πNN vertex.

5.1 Nucleon mass and sigma term at O(q4)

A full one-loop calculation of the nucleon mass also includes O(q4) terms (see Fig. 17). The quark-mass
expansion up to and including O(q4) is given by

mN = m + k1M
2 + k2M

3 + k3M
4 ln

(
M

m

)
+ k4M

4 + O(M5), (244)

where the coefficients ki in the EOMS scheme read [Fuchs et al., 2003a]

k1 = −4c1, k2 = − 3gA
2

32πF 2
, k3 = − 3

32π2F 2m

(
g

2
A − 8c1m + c2m + 4c3m

)
,

k4 =
3gA

2

32π2F 2m
(1 + 4c1m) +

3

128π2F 2
c2 − ê1. (245)

Here, ê1 = 16e38 + 2e115 + 2e116 is a linear combination of O(q4) coefficients [Fettes et al., 2000]. A
comparison with the results using the infrared regularization [Becher and Leutwyler, 1999] shows that
the lowest-order correction (k1 term) and those terms which are non-analytic in the quark mass m̂ (k2

and k3 terms) coincide. On the other hand, the analytic k4 term (∼ M4) is different. This is not
surprising; although both renormalization schemes satisfy the power counting specified in Sec. 4.2.2,
the use of different renormalization conditions is compensated by different values of the renormalized
parameters.

For an estimate of the various contributions of Eq. (244) to the nucleon mass, we make use of the
parameter set

c1 = −0.9 m−1
N , c2 = 2.5 m−1

N , c3 = −4.2 m−1
N , c4 = 2.3 m−1

N , (246)

which was obtained in Ref. [Becher and Leutwyler, 2001] from a (tree-level) fit to the πN scattering
threshold parameters. Using the numerical values

gA = 1.267, Fπ = 92.4 MeV, mN = mp = 938.3 MeV, Mπ = Mπ+ = 139.6 MeV, (247)

one obtains for the mass of nucleon in the chiral limit (at fixed ms ̸= 0):

m = mN −∆m = [938.3 − 74.8 + 15.3 + 4.7 + 1.6 − 2.3 ± 4] MeV = (883 ± 4) MeV (248)

with ∆m = (55.5±4) MeV. Here, we have made use of an estimate for ê1M4 = (2.3±4) MeV obtained
from the σ term. (Note that errors due to higher-order corrections are not taken into account.) In
terms of the SU(2)L×SU(2)R-chiral-symmetry-breaking mass term of the QCD Hamiltonian,

Hsb = m̂(ūu + d̄d), (249)

the pion-nucleon σ term is defined as the proton matrix element

σ =
1

2mp
⟨p(p, s)|Hsb(0)|p(p, s)⟩ (250)
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Figure 18: Pion mass dependence of the term k5M5 ln(M/mN) (solid line) for M < 400 MeV. For
comparison also the term k2M3 (dashed line) is shown.

shows the pion mass dependence of the term k5M5 ln(M/mN ) (solid line) in comparison with the
term k2M3 (dashed line) for pion masses below 400 MeV which is considered a region where chiral
extrapolations are valid (see, e.g., Refs. [Meißner, 2006], [Djukanovic et al., 2006]). We see that already
at M ≈ 360 MeV the term k5M5 ln(M/mN ) becomes as large as the leading non-analytic term at one-
loop order, k2M3, indicating the importance of the fifth-order terms at unphysical pion masses. Our
results for the renormalization-scheme-independent terms agree with the heavy-baryon ChPT results of
Ref. [McGovern and Birse, 1999].

5.3 Form factors of the nucleon

5.3.1 Scalar form factor

The pion-nucleon σ term corresponds to the kinematical point t = 0 of the scalar form factor which is
defined as

⟨p(p′, s′)|Hsb(0)|p(p, s)⟩ = ū(p′, s′)u(p, s)σ(t), t = (p′ − p)2.

The numerical results for the real and imaginary parts of the scalar form factor at O(q4) are shown
in Fig. 19 for the extended on-mass-shell scheme (solid lines) and the infrared regularization scheme
(dashed lines). While the imaginary parts are identical in both schemes, the differences in the real parts
are practically indistinguishable. Note that for both calculations σ(0) and ∆σ ≡ σ(2M2

π) − σ(0) have
been adjusted to the dispersion results of Ref. [Gasser et al., 1991], ∆σ = (15.2 ± 0.4) MeV.

Figure 20 contains an enlargement near t ≈ 4M2
π for the results at O(q3) which clearly displays how

the heavy-baryon calculation fails to produce the correct analytic behavior not only at the tree level
but also in higher-order loop diagrams. Both real and imaginary parts diverge as t → 4M2

π .

5.3.2 Electromagnetic form factors

Imposing the relevant symmetries such as translational invariance, Lorentz covariance, the discrete sym-
metries, and current conservation, the nucleon matrix element of the electromagnetic current operator
J µ(x),

J µ(x) =
2

3
ū(x)γµu(x) − 1

3
d̄(x)γµd(x),

68

t

T. Becher, H. Leutwyler: Baryon chiral perturbation theory in manifestly Lorentz invariant form 645

P P-q

q

P-k

k k-q

Fig. 1. Triangle graph. The solid, dashed, and wiggly lines
represent nucleons, pions and an external scalar source, re-
spectively

3 Scalar form factor

We first wish to show that, in the sector with baryon
number 1, the standard chiral expansion in powers of me-
son momenta and quark masses converges in only part
of the low-energy region. For definiteness, we consider
the scalar form factor of the nucleon in the isospin limit
(mu = md = m̂),

⟨N(P ′, s′)| m̂ (ūu + d̄d) |N(P, s)⟩ = ū′u σ(t) ,

t = (P ′ − P )2 .

The first two terms occurring in the low-energy expansion
of this form factor were worked out long ago, on the ba-
sis of a one-loop calculation within the Lorentz invariant
formulation of the effective theory [1]. In that expansion,
t, m̂ and M2

π are treated as small quantities of O(p2),
while the nucleon mass represents a term of O(p0). In
view of the quark-mass factor occurring in the definition
of σ(t), the low-energy expansion starts at order p2, with
a momentum-independent term generated by L(2)

N :

σ(t) = −4c1 M2
π

+
3 g2

AM2
πmN

4F 2
π

{

(t − 2M2
π) γ(t) − Mπ

8πmN

}

+ O(p4) (3)

The constant c1 occurring here is a renormalized version
of the bare coupling constant in (1). Since the renormal-
ization depends on the framework used, we do not discuss
it at this preliminary stage. The contribution of order p3

is generated by the triangle graph shown in Fig. 1, and is
fully determined by Fπ and gA.

The term involves the convergent scalar loop integral

γ(t) =
1
i

∫

d4k

(2π)4
1

(M2− k2−iϵ) (M2−(k−q)2−iϵ)

× 1
(m2−(P −k)2−iϵ)

(4)

Here and in the following, we identify the masses occurring
in the loop integrals with their leading order values, Mπ →
M , mN → m.

The function γ(t) represents a quantity of O(1/p). Since
the external nucleon lines are on the mass shell, the func-
tion exclusively depends on t = q2, M and m. The func-
tion is analytic in t, except for a cut along the positive

real axis, starting at t = 4M2. The triangle graph also
shows up in the analysis of the πN-scattering amplitude
to one-loop order, so that the function γ(t) is relevant also
for that case.

The imaginary part of γ(t) can be expressed in terms
of elementary functions [1]:

Imγ(t) =
θ(t − 4M2)

8π
√

t (4m2 − t)
arctan

√

(t − 4M2)(4m2 − t)
t − 2M2 .

(5)

Dropping corrections of order t/m2 = O(p2), this expres-
sion simplifies to

Imγ(t) =
θ(t − 4M2)
16πm

√
t

{

arctan
2m

√
t − 4M2

t − 2M2 + O(p2)

}

.

(6)

The problem addressed above shows up in this formula:;
the quantity

x =
2m

√
t − 4M2

t − 2M2

represents a term of O(1/p). The standard chiral expan-
sion of Imγ(t) thus corresponds to the series arctan x =
π/2−1/x+1/(3x3)+ . . . , which, however, only converges
for |x| > 1. In the vicinity of t = 4M2, the condition is
not met, so that the chiral expansion diverges. The prob-
lem arises because the quantity x takes small values there,
while the low-energy expansion treats x as a large term of
O(1/p). In the region |x| < 1, we may instead use the con-
vergent series arctan x = x−x3/3+ . . . , but this amounts
to an expansion in inverse powers of p.

The rapid variation of the form factor near t = 4M2

is related to the fact that the function arctan z exhibits
branch points at z = ± i. The analytic continuation of
γ(t) to the second sheet therefore contains a branch point
just below the threshold:

(t − 4M2)(4m2 − t)
(t − 2M2)2

= −1 → t = 4M2 − M4

m2 .

This implies that, in the threshold region, the form fac-
tor does not admit an expansion in powers of meson mo-
menta and quark masses. As is shown in [3], the heavy-
baryon perturbation series to O(p3) coincides with the chi-
ral expansion of the relativistic result [1], and it is noted
in [5] that this representation does not make sense near
t = 4M2. The corresponding imaginary part amounts to
the approximation arctanx → π/2, so that the singu-
larity structure on the second sheet is discarded. Within
HBχPT, an infinite series of internal-line insertions must
be summed up to properly describe the behaviour of the
form factor near the threshold. The relativistic formula
(3), on the other hand, does apply in the entire low-energy
region, because it involves the full function γ(t) rather
than the first one or two terms in the chiral expansion
thereof.



V. Pascalutsa et al., Phys.Lett.B600:239-247,2004. 

EOMS

Proton and neutron magnetic moments: chiral 
extrapolation



LSG, J. Martin Camalich , L. Alvarez-Ruso, M.J. Vicente Vacas, Phys.Rev.Lett.
101:222002,2008 

Octet baryon magnetic moments at NLO 
BChPT 

LO

NLO



Some successful applications of covariant 
BChPT (in the three-flavor sector)

Recent developments in SU(3) covariant baryon chiral perturbation theory  
Li-sheng Geng, Front.Phys.(Beijing) 8 (2013) 328-348 

✤ Magnetic moments                              
 PRL101:222002,2008;  PLB676:63,2009;  PRD80:034027,2009 

✤ Masses and sigma terms  
PRD82:074504,2010; PRD84:074024,2011; JHEP12:073,2012;    
PRD 87:074001,2013; PRD89:054034,2014 ; EPJC74:2754,2014 ; 
PRD91:051502,2015  

✤ Vector form factors (couplings) 
PRD79:094022,2009；PRD89:113007,2014  

✤ Axial form factors (couplings)                    
PRD78:014011,2008；PRD90:054502,2014



Towards a relativistic nuclear 
force



Our strategy

• We construct the kernel potentials from the 
covariant chiral Lagrangians  

• We retain the full form of the Dirac spinors

5 LECs



NN force at leading order 

• Feynman diagrams at LO 

• “Covariant power counting”— key to an EFT 

Contact Potential (CTP) One-Pion Exchange Potential (OPEP)

Expansion parameters:
pseudscalar meson masses or small
three-momenta of nucleons



NN force at leading order 

Explicitly covariant form

Expressed in terms of pauli matrices 

Non-relativistic (static) limit

• all allowed six 
spin operators, 



NN force at leading order 

Explicitly covariant form

Expressed in terms of pauli matrices and NR wfs

Non-relativistic (static) limit



A hint at a more efficient formulation

A large contribution of the correction terms is essential 
to describe the 1S0 phase shift

J. Soto and J. Tarrus, Phys. Rev. C78, 024003 (2008).

B. Long, Phys. Rev. C88, 014002 (2013). 



The nuclear force is non-perturbative

T
� � � � � �� � � …

Non-perturbative summation of the tree-level potential

3D reduction of the Bethe-Salpeter equation (Kadyshevsky) 

With the implicit mass “on-shell” approximation of the 
potential.



NN force at leading order 

• 5 LECs to fit the np phase shifts of Nijmegen 93

• Cutoff renormalization in solving the scattering eq.



Two remarks

😃 Potential is fully covariant 
😞 Scattering amplitude is not fully covariant,  
       because of the use of the Kadyshevsky  
       equation and the regulating form factor 



Best fit as a function of the cutoff

L=747 MeV, the minimum of fit-c2=106.90, c2/d.o.f. = 2.89

LECs Values 
[104 GeV-2]

CS 0.1339
CA -0.05477
CV -0.2673
CAV -0.2454
CT -0.06310



A closer look at the partial waves

• Improved 
description of 1S0 
3P0，1P1 phase shifts 

• Quantitatively 
similar with the non 
relativistic case for J=1 
partial waves



Relativistic vs. non-relativistic 
Very promising

A more efficient description is achieved

Relativistic Chiral NF Non-relativistic Chiral NF

Chiral order LO LO NLO*

No. of LECs 5 2 9
c2/d.o.f. 2.9 147.9 2.5



Higher partial waves remain the same



BbS vs. Kadeshevsky scattering equation

(almost) Independent 
from 

the scattering equation

BbS(Blankenbecler-Sugar) —Bonn potential



Deuteron Properties and scattering lengths
in reasonable agreement with data



ΛN and ΣN system (S = -1, I = 3/2, 1/2)

Σ+p Σ-nΛp, Σ+n, Σ0p Λn, Σ0n, Σ-p
I3-3/2-1/2+1/2+3/2

Contact

One-meson-exchange



Clifford algebra:

Four-baryon	 contact	terms

Meson-baryon	 interaction

Covariant derivative:

ΛN and ΣN systems (S = -1, I = 3/2, 1/2)

D=0.8  & F=0.46

12 

LECs

parameter free:



Scarce scattering data of 
poor quality

• R. Engelmann, et al., Phys. Lett. 21 (1966) 587

• G. Alexander, et al., Phys. Rev. 173 (1968) 1452

• B. Sechi-Zorn, et al., Phys. Rev. 175 (1968) 1735

• F. Eisele, et al., Phys. Lett. 37B (1971) 204

• V. Hepp and H. Schleich, Z. Phys. 214 (1968) 71

• Poor

• Short lifetime of hyperons! (≤ 10-10 s)

1. Small quantity (36, S= -1, YN)

2. Age-old (1960s - 1970s)

3. Poor quality (large error bar)



Description of experimental data

Red solid line: Covariant ChEFT (LO)          Blue dotted line: Weinberg’s approach (LO)

Weinberg’s approach

28.3 16.2
5 (LO*) 23 (NLO#)

Covariant ChEFT

16.7
12 (LO)

NSC97f$

16.7
29

*Polinder NPA 799 (2006) 244        #Haidenbauer NPA 915 (2013) 24        $Rijken PRC 59 (1999) 21

χ2 

No. of LECs

36 YN data

ΛF = 600 MeV

Relativistic formulation seems to be more efficient!



Summary and Outlook

✤ Nuclear forces based on Chiral EFT have made remarkable 
progress in the past decade. 

✤ Covariant descriptions of the one-baryon and nuclear systems 
have been quite successful as well.  

✤ Time is mature to develop a covariant formulation of baryon-
baryon forces in chiral EFT. 

✤ Initial (first) results are very promising. The key is the covariant 
power counting (vs. the Weinberg power counting) 

✤ More is coming. Remain tuned. 
- NLO, N2LO (high precision) NN 
- NLO YN, YY — connection to LQCD



Thank you very much  
for your attention!
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Weinberg Power Counting

✤ Potential organized by

✤ Chiral power counting

• B: number of external baryons

• L: number of GB loops

• νi: number of vertices with dimension Δi

- di: number of derivatives or NGB masses

- bi: number of baryon fields in the interaction Δi

36 3 Chiral Perturbation Theory in SU(3)

3.6 Power Counting
Finally we need a criterion for the importance of a Feynman diagram, i.e. a power count-
ing scheme. For the mesonic sector this is straightforward. It follows by an argument of
Weinberg: the transition amplitude obtained from a Feynman diagram can be written
as

M = M (q, g, µ) = q‹f (q/µ, g) , (3.57)

where µ is some renormalization scale and g is a generic symbol for the relevant low-
energy constants. ‹ is called the chiral dimension. A meson propagator contributes ≠2
powers of q to the S-matrix element. A vertex of L (d)

„ contributes as +d powers and a
four-momentum integration contributes +4. This leads to the formula

‹ = 4L ≠ 2IM +
ÿ

d

dNd , (3.58)

where Nd is the number of vertices originating from L (d)
„ . IM is the number of internal

meson lines and L is the number of meson loops.

When adding baryons to the e�ective Lagrangian the additional mass scale MB ap-
pears, even in the chiral limit. This scale destroys the power counting above. To over-
come this problem one can treat the baryons non-relativistically (as static sources) with
relativistic corrections, cf. Ref. [Wei91]. This leads to an expansion in 1/MB. The baryon
mass is of the same order of magnitude as the chiral scale, MB ¥ �‰. Therefore after
the expansion in MB, the baryon mass scale is treated in the power counting as the scale
�‰. The baryon propagator in the non-relativistic limit contributes then ≠1 powers of
q to the S-matrix element, and one obtains

‹ = 4L ≠ 2IM ≠ IB +
ÿ

d

dNd , (3.59)

with IB the number of internal baryon lines. Nd is the number of vertices originating
from terms of the Lagrangian with chiral dimension d.

If this power counting were completely true, it would rule out the existence of baryon
bound states, cf. Ref. [Wei91]. Fortunately there are diagrams that violate this power
counting, the two-particle reducible diagrams. This leads to the definition of an e�ective
potential which contains only the (two-particle) irreducible parts of the T -matrix. After
applying power counting to this e�ective potential Ve� , it is inserted in a regularized
Lippmann-Schwinger equation. From solving the Lippmann-Schwinger equation one
obtains then the full T -matrix including the reducible, also called iterated, diagrams to
generate bound states and scattering states.

The terms in the e�ective potential are ordered according to Eq. (3.59), which can be
simplified for the baryon-baryon interaction by employing topological identities:

Ve� = Ve� (q, g, µ) =
ÿ

‹

q‹V‹ (q/µ, g) , (3.60)

‹ = 2 ≠ 1
2B + 2L +

ÿ

i

vi�i , �i = di + 1
2bi ≠ 2 , (3.61)
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Leading order: ν=0

• B=4, L=0, Δi=0

- contact: di=0;bi=4

- one pion exchange: di=1, bi=2
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where B is the number of external baryons, L is the number of Goldstone boson loops
and vi is the number of vertices with dimension �i. For a vertex with dimension �i, the
number of derivatives or Goldstone boson masses is denoted by di, and bi is the number
of internal baryon lines. The soft scale q is either a baryon three-momentum, a Goldstone
boson four-momentum or a Goldstone boson mass. Because of the high baryon mass,
we can neglect any baryon-loop e�ects in the potential. We use a convention such that
a positive potential in momentum space corresponds to attraction, cf. Appendix A.

Let us now look closer at baryon-baryon interactions. The leading order (LO) potential
is given by ‹ = 0 and B = 4, L = 0, �i = 0. There are two possibilities: non-derivative
four-baryon contact terms (di = 0, bi = 4 and one-meson-exchange diagrams (di = 1,
bi = 2).

At the next order ‹ = 1 one has B = 4, L = 0, �i = 1. All potentials at this order
vanish because of parity conservation and Lorentz symmetry. There are also no 1/MB
corrections to one-meson exchange.

The next-to-leading order (NLO) potential is given by ‹ = 2, where B = 4, L = 0,
�i = (2 or 2 ◊ 1); or B = 2, L = 1, �i = 0. The former gives rise to new contact term
potentials. The latter describe one-loop two-meson exchange processes:

Also, relativistic 1/M2
B corrections to one-meson-exchange diagrams enter at this chiral

order. One can also generate at this order diagrams such as

They serve to renormalize baryon lines, meson lines and coupling constants. We use
a modified minimal subtraction scheme called ÁMS where we omit these diagrams and
use the physical values of these quantities instead. Divergences generated in the loop
diagrams above are treated in dimensional regularization. All ultraviolet divergences can
be absorbed by a redefinition of the parameters and fields of the Lagrangian using this ÁMS
scheme, since the Lagrangian contains all terms consistent with the given symmetries.
The low-energy constants and contact term parameters therefore consist of both a finite
part and an infinite part.



ν=1 vanishes

• B=4, L=0, Δ=1

• Parity conservation



Next-to-leading order ν=2

• B=4, L=0, Δi=2 or 2x1

• B=4, L=1, Δi=0

3.6 Power Counting 37

where B is the number of external baryons, L is the number of Goldstone boson loops
and vi is the number of vertices with dimension �i. For a vertex with dimension �i, the
number of derivatives or Goldstone boson masses is denoted by di, and bi is the number
of internal baryon lines. The soft scale q is either a baryon three-momentum, a Goldstone
boson four-momentum or a Goldstone boson mass. Because of the high baryon mass,
we can neglect any baryon-loop e�ects in the potential. We use a convention such that
a positive potential in momentum space corresponds to attraction, cf. Appendix A.

Let us now look closer at baryon-baryon interactions. The leading order (LO) potential
is given by ‹ = 0 and B = 4, L = 0, �i = 0. There are two possibilities: non-derivative
four-baryon contact terms (di = 0, bi = 4 and one-meson-exchange diagrams (di = 1,
bi = 2).

At the next order ‹ = 1 one has B = 4, L = 0, �i = 1. All potentials at this order
vanish because of parity conservation and Lorentz symmetry. There are also no 1/MB
corrections to one-meson exchange.

The next-to-leading order (NLO) potential is given by ‹ = 2, where B = 4, L = 0,
�i = (2 or 2 ◊ 1); or B = 2, L = 1, �i = 0. The former gives rise to new contact term
potentials. The latter describe one-loop two-meson exchange processes:

Also, relativistic 1/M2
B corrections to one-meson-exchange diagrams enter at this chiral

order. One can also generate at this order diagrams such as

They serve to renormalize baryon lines, meson lines and coupling constants. We use
a modified minimal subtraction scheme called ÁMS where we omit these diagrams and
use the physical values of these quantities instead. Divergences generated in the loop
diagrams above are treated in dimensional regularization. All ultraviolet divergences can
be absorbed by a redefinition of the parameters and fields of the Lagrangian using this ÁMS
scheme, since the Lagrangian contains all terms consistent with the given symmetries.
The low-energy constants and contact term parameters therefore consist of both a finite
part and an infinite part.



Standard Model of Particle Physics



Number of parameters for the np potential



Covariance Matrix
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