Lattice QCD simulations on the S=-2 baryon-baryon interaction

Kenji Sasaki (YITP, Kyoto University)

for HAL QCD Collaboration

HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

S. Aoki	T. Doi	F. Etminan	S. Gongyo	T. Hatsuda
(YITP)	(<i>RIKEN</i>)	(<i>Birjand U</i> .)	(<i>U. of Tours</i>)	(<i>RIKEN</i>)
Y. Ikeda	T. Inoue (<i>Nihon U</i> .)	N. Ishii	T. Iritani	D. Kawai
(<i>RCNP</i>)		(<i>RCNP</i>)	(<i>RIKEN</i>)	(<i>YITP</i>)
T. Miyamoto (<i>YITP</i>)	K. Murano (<i>RCNP</i>)	H. Nemura (<i>U. of Tsukuba</i>)		

Introduction

Introduction

BB interactions are crucial to investigate the nuclear phenomena

Once we obtain "realistic" nuclear potentials, we apply them to the (hyper) nuclear structure calculations.

Baryon interactions from fundamental theory, QCD, are highly awaited.

Introduction

Aim : Nuclear structures and exotic states from QCD

Interests of S=-2 multi-baryon system

H-dibaryon

The flavor singlet state with J=0 predicted by R.L. Jaffe.

- Strongly attractive color magnetic interaction.
- No quark Pauli principle for flavor singlet state.

Double- Λ hypernucleus

Conclusions of the "NAGARA Event"

K.Nakazawa and KEK-E176 & E373 Collaborators

 Λ −N attraction Λ − Λ weak attraction $m_{H} \ge 2m_{\Lambda} - 6.9$ MeV

Ξ hypernucleus

Conclusions of the "KISO Event"
 K.Nakazawa and KEK-E373 Collaborators

 Ξ –N attraction

HAL QCD method

QCD to hadronic interactions

HAL QCD method enables us to derive baryon interactions directly from QCD

0.5

r[fm]

1.5

Nambu-Bethe-Salpeter wave function

Definition : equal-time NBS w.f.

$$\Psi^{B_1B_2}(E,\vec{r})e^{-Et} = \sum_{\vec{x}} \langle 0|B_{1\alpha}(t,\vec{x}+\vec{r})B_{2\alpha}(t,\vec{x})|E\rangle$$

E : Total energy of the system

Local composite interpolating operators

$$B_{\alpha} = \epsilon^{abc} (q_a^T C \gamma_5 q_b) q_{c\alpha}$$

It satisfies the Helmholtz eq. in asymptotic region :

$$(p^2 + \nabla^2) \Psi(E, \vec{r}) = 0$$

Asymptotic form of NBS wave function

$$\Psi(E, \vec{r}) \simeq A \frac{\sin(pr + \delta(E))}{pr}$$

C.-J.D.Lin et al., NPB619 (2001) 467.

NBS w.f. is the same asymptotic form with quantum mechanical w. f.. (NBS wave function is characterized by phase shift)

$$S \equiv e^{i\delta}$$

Time-dependent Schrödinger like equation

Start with the normalized four-point correlator.

$$R_{I}^{B_{1}B_{2}}(t,\vec{r}) = F^{B_{1}B_{2}}(t,\vec{r})e^{(m_{1}+m_{2})t}$$

$$= A_{0}\Psi(\vec{r},E_{0})e^{-(E_{0}-m_{1}-m_{2})t} + A_{1}\Psi(\vec{r},E_{1})e^{-(E_{1}-m_{1}-m_{2})t} + \cdots$$

$$\frac{p_{0}^{2}}{2\mu} + \frac{\nabla^{2}}{2\mu}\Psi(\vec{r},E_{0}) = \int U(\vec{r},\vec{r}')\Psi(\vec{r}',E_{0})d^{3}r'$$

$$E_{n}-m_{1}-m_{2} \approx \frac{p_{n}^{2}}{2\mu} \left(\frac{p_{1}^{2}}{2\mu} + \frac{\nabla^{2}}{2\mu}\right)\Psi(\vec{r},E_{1}) = \int U(\vec{r},\vec{r}')\Psi(\vec{r}',E_{1})d^{3}r'$$
A single state saturation is not required!!
$$\left(-\frac{\partial}{\partial t} + \frac{\nabla^{2}}{2\mu}\right)R_{I}^{B_{1}B_{2}}(t,\vec{r}) = \int U(\vec{r},\vec{r}')R_{I}^{B_{1}B_{2}}(t,\vec{r})d^{3}r'$$
Derivative (velocity) expansion of U
$$U(\vec{r},\vec{r}') = \left[V_{C}(r) + S_{12}V_{T}(r)\right] + \left[\vec{L}\cdot\vec{S}_{s}V_{LS}(r) + \vec{L}\cdot\vec{S}_{a}V_{ALS}(r)\right] + O(\nabla^{2})$$

HAL QCD method (coupled-channel)

NBS wave function

 $\Psi^{\alpha}(E_i,\vec{r})e^{-E_it} = \langle 0|(B_1B_2)^{\alpha}(\vec{r})|E_i\rangle$ $\Psi^{\beta}(E_{i},\vec{r})e^{-E_{i}t} = \langle 0|(B_{3}B_{4})^{\beta}(\vec{r})|E_{i}\rangle \qquad R_{E}^{B_{1}B_{2}}(t,\vec{r}) = A_{E}\Psi^{B_{1}B_{2}}(\vec{r},E)e^{(-E+m_{1}+m_{2})t}$

$$\frac{\int dr \,\tilde{\Psi}_{\beta}(E',\vec{r}) \Psi^{\gamma}(E,\vec{r}) = \delta(E'-E) \delta_{\beta}^{\gamma}}{R R (E',\vec{r})} = \delta(E'-E) \delta_{\beta}^{\gamma}$$

Leading order of velocity expansion and time-derivative method.

Modified coupled-channel Schrödinger equation

$$\begin{pmatrix} \left(-\frac{\partial}{\partial t} + \frac{\nabla^{2}}{2\mu_{\alpha}}\right) R_{E_{0}}^{\alpha}(t,\vec{r}) \\ \left(-\frac{\partial}{\partial t} + \frac{\nabla^{2}}{2\mu_{\beta}}\right) R_{E_{0}}^{\beta}(t,\vec{r}) \end{pmatrix} = \begin{pmatrix} V_{\alpha}^{\alpha}(\vec{r}) & V_{\beta}^{\alpha}(\vec{r}) \Delta_{\beta}^{\alpha}(t) \\ V_{\alpha}^{\beta}(\vec{r}) \Delta_{\alpha}^{\beta}(t) & V_{\beta}^{\beta}(\vec{r}) \end{pmatrix} \begin{pmatrix} R_{E_{0}}^{\alpha}(t,\vec{r}) \\ R_{E_{0}}^{\beta}(t,\vec{r}) \end{pmatrix} \\ \begin{pmatrix} \left(-\frac{\partial}{\partial t} + \frac{\mathbf{v}}{2\mu_{\beta}}\right) R_{E_{1}}^{\beta}(t,\vec{r}) \end{pmatrix} & \Delta_{\beta}^{\alpha} = \frac{\exp\left(-(m_{\alpha_{1}} + m_{\alpha_{2}})t\right)}{\exp\left(-(m_{\beta_{1}} + m_{\beta_{2}})t\right)} \end{pmatrix} \begin{pmatrix} \vec{r} \Delta_{\beta}^{\alpha}(t) \end{pmatrix} \begin{pmatrix} R_{E_{1}}^{\alpha}(t,\vec{r}) \\ R_{E_{1}}^{\beta}(t,\vec{r}) \end{pmatrix}$$

S.Aoki et al [HAL QCD Collab.] Proc. Jpn. Acad., Ser. B, 87 509 K.Sasaki et al [HAL QCD Collab.] PTEP no 11 (2015) 113B01

Considering two different energy eigen states

$$\begin{array}{l} \textbf{Potential} \\ \begin{pmatrix} V^{\alpha}_{\ \alpha}(\vec{r}) & V^{\alpha}_{\ \beta}(\vec{r})\Delta^{\alpha}_{\beta} \\ V^{\beta}_{\ \alpha}(\vec{r})\Delta^{\beta}_{\alpha} & V^{\beta}_{\ \beta}(\vec{r}) \end{pmatrix} = \begin{pmatrix} (\frac{\nabla^{2}}{2\mu_{\alpha}} - \frac{\partial}{\partial t})R^{\alpha}_{E0}(t,\vec{r}) & (\frac{\nabla^{2}}{2\mu_{\beta}} - \frac{\partial}{\partial t})R^{\alpha}_{E1}(t,\vec{r}) \\ (\frac{\nabla^{2}}{2\mu_{\alpha}} - \frac{\partial}{\partial t})R^{\beta}_{E0}(t,\vec{r}) & (\frac{\nabla^{2}}{2\mu_{\beta}} - \frac{\partial}{\partial t})R^{\beta}_{E1}(t,\vec{r}) \end{pmatrix} \begin{pmatrix} R^{\alpha}_{E0}(t,\vec{r}) & R^{\alpha}_{E1}(t,\vec{r}) \\ R^{\beta}_{E0}(t,\vec{r}) & R^{\beta}_{E1}(t,\vec{r}) \end{pmatrix}^{-1} \end{array}$$

Numerical results

Numerical setup

2+1 flavor gauge configurations.

Iwasaki gauge action & O(a) improved Wilson quark action

- *a* = 0.085 [*fm*], a⁻¹ = 2.333 GeV.
- 96³x96 lattice, L = 8.12 [fm].
- 414 confs x 28 sources x 4 rotations.

Flat wall source is considered to produce S-wave B-B state.

Baryon-baryon system in S=-2 sector

Relations between BB channels and SU(3) irreducible representations

Features of flavor singlet interaction is integrated into the S=-2 J^p=0⁺, I=0 system.

ΛΛ, ΝΞ, ΣΣ (I=0) 1 S_o channel

t=09

t=10

 $\Sigma\Sigma$ (I=2) ¹S_o channel

t=09

t=10

t=11

t=12

NE (I=0) ³S-D₁ channel

t=1

Kenji Sasaki (YITP, Kyoto University) for HAL QCD Collaboration

Spin and Isospin dependence of $N\Xi$ potentials $\frac{t=10}{t=11}$

t=09

t=12

Effective $\Lambda\Lambda$ - $N\Xi$ interactions

Effective two channel potential

Original coupled channel equation

$$\begin{pmatrix} (E^{\Lambda\Lambda} - H_0^{\Lambda\Lambda}) R^{\Lambda\Lambda}(\vec{r},t) \\ (E^{\Xi N} - H_0^{\Xi N}) R^{\Xi N}(\vec{r},t) \\ (E^{\Sigma\Sigma} - H_0^{\Sigma\Sigma}) R^{\Sigma\Sigma}(\vec{r},t) \end{pmatrix} = \begin{pmatrix} V^{\Lambda\Lambda}_{\Lambda\Lambda}(\vec{r}) & V^{\Lambda\Lambda}_{\Xi N}(\vec{r}) & V^{\Lambda\Lambda}_{\Sigma\Sigma}(\vec{r}) \\ V^{\Xi N}_{\Lambda\Lambda}(\vec{r}) & V^{\Xi N}_{\Xi N}(\vec{r}) & V^{\Xi N}_{\Sigma\Sigma}(\vec{r}) \\ V^{\Sigma\Sigma}_{\Lambda\Lambda}(\vec{r}) & V^{\Sigma\Sigma}_{\Xi N}(\vec{r}) & V^{\Sigma\Sigma}_{\Sigma\Sigma}(\vec{r}) \end{pmatrix} \begin{pmatrix} R^{\Lambda\Lambda}(\vec{r},t) \\ R^{\Xi N}(\vec{r},t) \\ R^{\Sigma\Sigma}(\vec{r},t) \end{pmatrix}$$

Truncation of $\Sigma\Sigma$ channel

Reduced coupled channel equation

$$\begin{pmatrix} (E^{\Lambda\Lambda} - H_0^{\Lambda\Lambda}) R^{\Lambda\Lambda}(\vec{r},t) \\ (E^{\Xi N} - H_0^{\Xi N}) R^{\Xi N}(\vec{r},t) \end{pmatrix} = \begin{pmatrix} \overline{V_{\Lambda\Lambda}^{\Lambda\Lambda}}(\vec{r}) & \overline{V_{\Xi N}^{\Lambda\Lambda}}(\vec{r}) \\ \overline{V_{\Lambda\Lambda}^{\Xi N}}(\vec{r}) & \overline{V_{\Xi N}^{\Xi N}}(\vec{r}) \end{pmatrix} \begin{pmatrix} R^{\Lambda\Lambda}(\vec{r},t) \\ R^{\Xi N}(\vec{r},t) \end{pmatrix}$$

Effective $\Lambda\Lambda$ -N Ξ potential

The same scattering phase shift would be expected in a low energy region.

Non-locality (energy dependence, higher derivative contribution)

of potential matrix could be enhanced.

t=10 t=11 Spin and Isospin dependence of $N\Xi$ potentials

2

2.5

1.5

-50

0

0.5

1

3

V_N=1S0I1(t=09) →

t=09

t=12

3

1

Kenji Sasaki (YITP, Kyoto University) for HAL QCD Collaboration

-50

$\Lambda\Lambda$, N Ξ (I=0) ¹S₀ potential (2ch calc.)

> Nf = 2+1 full QCD m π =146MeV with L = 8.12fm

Potential calculated by only using ΛΛ and ΝΞ channels.

Long range part of potential is almost stable against the time slice.

- Short range part of NE potential changes as time t goes.
- ●AA–NΞ transition potential is quite small in r > 0.7fm region

Preliminary!

> Nf = 2+1 full QCD m π =146MeV with L = 8.12fm

AA and NE phase shift is calculated by using 2ch effective potential.
A sharp resonance is found just below the NE threshold.
Inelasticity is small.

t = 09

t=10

t=11

Preliminary!

Breit-Wigner mass and width

> N_f = 2+1 full QCD m π =146MeV with L = 8.12fm

180

δ [deg]

Preliminary!

Summary

S=-2 BB interaction is investigated using 414confs x 28src x 4rot.

- We perform coupled-channel calculations for S=-2 BB system
- We find that the NE interaction largely depends on their spin and isospin.
- The 1S0 I=0 effective NE state is very close to the unitary limit.
- For H-dibaryon channel, we find that sharp resonance is just below the NE threshold.
- Resonance position from Breit-Wigner type fit tends to close to the NE threshold as "t" becomes larger.
 - We continue to study it by using higher statistical data.