

The strangeness quark mean field theory

Jinniu Hu

School of Physics, Nankai University

J.H, A. Li, H. Shen, and H. Toki, Prog. Theor. Exp. Phys. 2014 (2014) 013D02
J.H, A. Li, H. Toki, and W. Zuo, Phys. Rev. C 89 (2014) 025802
X. Xing, J.H., and H. Shen, Phys. Rev. C 94 (2016) 044308
X. Xing, J.H., and H. Shen, in preparation

14/03/2017

Outline

- Introduction
- Strangeness quark mean field theory
- Numerical results and discussions
- Summary and Perspectives

Strangeness nuclear physics

Hadrons

Baryon-baryon force

A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

14/03/2017

Jinniu Hu

Compact star

Hypernuclei

Theoretical methods

國南國大學

✓ ab initio methods

- H. Nemura, Y. Akaishi, and Y. Suzuki, Phys. Rev. Lett. 89(2002)142504
- E. Hiyama and T. Yamada, Prog. Part. Nucl. Phys. 63(2009)339
- D. Lonardoni, S. Gandolfi, and F. Pederiva, Phys. Rev. C 87(2013)041303(R)
- R. Wirth, et al. Phys. Rev. Lett. 113(2014)192502

√Shell model

D. J. Millener, Nucl. Phys. A 881(2012)298

✓ Skyrme Hartree-Fock model

M. Rayet, Ann. Phys. (NY) 102(1976)226
X. R. Zhou, et al. Phys. Rev. C 76(2007)034312
H.-J. Schulze and T. Rijken, Phys. Rev. C 88(2013)024322

✓ Relativistic mean-field model

R. Brockmann and W. Weise, Phys. Lett. B 69(1977)167
H. Shen, F. Yang, and H. Toki, Prog. Theor. Phys. 115(2006)325
R. L. Xu, C. Wu, and Z. Z. Ren, J. Phys. G 39(2012)085107

T. T. Sun, et al., Phys. Rev. C 94(2016)064319

•••••

Relativistic many-body theories from quark level

- ✓ baryons are not point particles!
- ✓ baryon properties change in medium!
- √ quark-gluon plasma!

Strangeness system with quark model (

✓ Quark meson coupling (QMC) model
 K. Tsushima, et al. Nucl. Phys. A 630(1998)691
 ✓ Friedberg-Lee model

.....

J. S. Liang and H. Shen, Phys. Rev. C88 (2013) 035208

✓ Quark mean field (QMF) model
H. Shen, H. Toki, Nucl. Phys. A 707 (2002) 469
J.H, A. Li, H. Shen, and H. Toki, Prog. Theor. Exp. Phys. 2014(2014) 013D02
J.H, A. Li, H. Toki, and W. Zuo, Phys. Rev. C 89(2014) 025802
Properties of hypernuclei and neutron star with QMF model

周

Outline

- Introduction
- Strangeness quark mean field theory
- Numerical results and discussions
- Summary and Perspectives

X. Xing, J.H., and H. Shen, Phys. Rev. C 94 (2016) 044308

Constituent quark in Dirac equation

 $[-i\alpha \cdot \nabla + \beta m_i^* + \beta U(r)]q_i(r) = \varepsilon_i^* q_i(r)$

where, the effective quark mass is $m_i^* = m_i + g_\sigma^i \sigma$

and effective single particle energy is

$$\varepsilon_i^* = \varepsilon_i - g_\omega^i - g_\rho^i \rho \tau_3$$

Confinement potential

$$U(r) = \frac{1}{2}(1+\gamma^0)(ar^2 + V_0)$$

• Center-of-mass corrections $\langle B|\sum_{i=1}^{3}\gamma^{0}(i)\{\frac{1}{3}\gamma(i)\cdot\sum_{j=1}^{3}\vec{p_{j}}+\frac{1}{2}(1+\gamma^{0}(i))[U(r_{i})-U(\rho_{i})]\}|B\rangle$

Quark level

Pionic self-energy correction

$$\delta M_B^{\pi} = -\sum_k \sum_{B'} \frac{V_j^{\dagger BB'} V_j^{BB'}}{w_k}$$

• Gluon correction

Color-electric
$$(\Delta E_B)_g^E = \frac{1}{8\pi} \sum_{i,j} \sum_{a=1}^8 \int \frac{d^3 r_i d^3 r_j}{|\vec{r_i} - \vec{r_j}|} \langle B|J_i^{0a}(\vec{r_i})J_j^{0a}(\vec{r_j})|B\rangle$$

Color-magnetic
$$(\Delta E_B)_g^M = -\frac{1}{8\pi} \sum_{i,j} \sum_{a=1}^8 \int \frac{d^3 r_i d^3 r_j}{|\vec{r_i} - \vec{r_j}|} \langle B|\vec{J}_i^a(\vec{r_i}) \cdot \vec{J}_j^a(\vec{r_j})|B \rangle$$

Quark color current density $J_i^{\mu a}(x) = g_c \bar{\psi}_q(x) \gamma^{\mu} \lambda_i^a \psi_q(x)$

• Baryon mass

$$M_B^* = E_B^{*0} - \epsilon_{\text{c.m.}} + \delta M_B^{\pi} + (\Delta E_B)_g^E + (\Delta E_B)_g^M$$

Baryon level

• Strangeness QMF Lagrangian

$$\begin{split} \mathcal{L}_{\text{QMF}} &= \bar{\psi} \left[i\gamma_{\mu}\partial^{\mu} - M_{N}^{*} - g_{\omega}\omega\gamma^{0} - g_{\rho}\rho\tau_{3}\gamma^{0} - e\frac{(1-\tau_{3})}{2}A\gamma^{0} \right]\psi \\ &+ \bar{\psi}_{H} \left[i\gamma_{\mu}\partial^{\mu} - M_{H}^{*} - g_{\omega}^{H}\omega\gamma^{0} + \frac{f_{\omega}^{H}}{2M_{H}}\sigma^{0i}\partial_{i}\omega \right]\psi_{H} \\ &- \frac{1}{2}(\nabla\sigma)^{2} - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} \\ &+ \frac{1}{2}(\nabla\omega)^{2} + \frac{1}{2}m_{\omega}^{2}\omega^{2} + \frac{1}{4}c_{3}\omega^{4} \\ &+ \frac{1}{2}(\nabla\rho)^{2} + \frac{1}{2}m_{\rho}^{2}\rho^{2} + \frac{1}{2}(\nabla A)^{2}, \end{split} \qquad \bullet \quad \text{Dirac equations for baryons} \\ &+ \frac{1}{2}(\nabla\rho)^{2} + \frac{1}{2}m_{\rho}^{2}\rho^{2} + \frac{1}{2}(\nabla A)^{2}, \qquad \left[i\gamma_{\mu}\partial^{\mu} - M_{N}^{*} - g_{\omega}\omega\gamma^{0} - g_{\rho}\rho\tau_{3}\gamma^{0} - e\frac{(1-\tau_{3})}{2}A\gamma^{0} \right]\psi = 0, \\ &\left[i\gamma_{\mu}\partial^{\mu} - M_{H}^{*} - g_{\omega}^{H}\omega\gamma^{0} + \frac{f_{\omega}^{H}}{2M_{H}}\sigma^{0i}\partial_{i}\omega \right]\psi_{H} = 0. \end{split}$$

• Equations of motion for mesons

$$\begin{split} \Delta \sigma &- m_{\sigma}^{2} \sigma - g_{2} \sigma^{2} - g_{3} \sigma^{3} = \frac{\partial M_{N}^{*}}{\partial \sigma} \langle \bar{\psi} \psi \rangle + \frac{\partial M_{H}^{*}}{\partial \sigma} \langle \bar{\psi}_{H} \psi_{H} \rangle, \\ \Delta \omega &- m_{\omega}^{2} \omega - c_{3} \omega^{3} = -g_{\omega} \langle \bar{\psi} \gamma^{0} \psi \rangle - g_{\omega}^{H} \langle \bar{\psi}_{H} \gamma^{0} \psi_{H} \rangle + \frac{f_{\omega}^{H}}{2M_{H}} \partial_{i} \langle \bar{\psi}_{H} \sigma^{0i} \psi_{H} \rangle, \\ \Delta \rho &- m_{\rho}^{2} \rho = -g_{\rho} \langle \bar{\psi} \tau_{3} \gamma^{0} \psi \rangle, \\ \Delta A &= -e \langle \bar{\psi} \frac{(1 - \tau_{3})}{2} \gamma^{0} \psi \rangle. \end{split}$$

14/03/2017

Outline

- Introduction
- Strangeness quark mean field theory
- Numerical results and discussions
- Summary and Perspectives

SQMF parameters

The strength of quark confinement potential

=									=
_	m	u (MeV)	V_u (MeV) a_u (fr	$m^{-3}) m_s$	(MeV)	$V_s \ ({\rm MeV})$	$a_s \ (\mathrm{fm}^{-3})$)
	set A	250	-24.28660	0.579	9450	330	101.78180	0.097317	7
	set B	300	-62.25718	87 0.534	1296	380	54.548210	0.087243	}
set C		350	-102.0415	75 0.495	5596	430	6.802695	0.079534	Ł
	he co	upling	constar	nts be	tweer	n mes	on and	baryo	= ns
Model	m	$g_{\sigma}^{u} = g_{\sigma}^{u}$	g_ω	g^{Λ}_{ω}	g_{ω}^{Ξ}	$g_{ ho}$	g_2	g_3	C ₃
	(Me)	eV)		1 marine			(fm^{-1})		
QMF-N	NK1S 25	50 5.158'	71 11.54726	$0.8258g_{\omega}$	$0.4965g_{\omega}$	3.79601	-3.52737	-78.52006	305.00240
QMF-N	MK2S 30	0 5.0934	46 12.30084	$0.8134g_{\omega}$	$0.4800g_{\omega}$	4.04190	-3.42813	-57.68387	249.05654
QMF-N	VK3S 35	50 5.016	31 12.83898	$0.8040g_{\omega}$	$0.4681g_{\omega}$	4.10772	-3.29969	-39.87981	221.68240
							$\Lambda = -$	$-30 \mathrm{MeV}$	
						U_2	$\Xi = -$	$12 { m MeV}$	
14/03/2017				Jinni	u Hu				

周大學

14/03/2017

The properties of nuclei

Binding energy and charge radii

The properties of nuclear matter

Nuclear saturation properties

Model	$ ho_0$	E/A	K_0	J	M_N^*/M_N	L^0	K_{sym}^0	$K_{\rm asy}$	Q_0	K_{τ}
	(fm^{-3})	(MeV)	(MeV)	(MeV)		(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
QMF-NK1	0.154	-16.3	323	30.6	0.70	84.8	-28.8	-537.6	495.4	-667.7
QMF-NK2	0.152	-16.3	328	32.9	0.66	93.7	-23.5	-585.7	221.0	-648.8
QMF-NK3	0.150	-16.3	322	33.6	0.64	97.3	-12.0	-595.8	263.0	-675.3

symmetric nuclear matter

pure neutron matter

周大

The Λ energy levels of hypernuclei

周大

14/03/2017

周大。

14/03/2017

The properties of hypernuclei

The scalar and vector potentials of Λ and Ξ^0 hypernuclei

QMF-NK3

QMF-NK2S

QMF-NK1S

 $\mathsf{U}_{v}^{\Xi^{0}}$

 $U_{s}^{\Xi^{\circ}}$

 $U_v^{\Xi^0}$

 $\mathsf{U}^{\Xi^0}_{\mathsf{S}}$

 $\mathsf{U}_{\mathsf{v}}^{\Xi^0}$

 $U_s^{\Xi^\circ}$

8

6

²⁰⁸_{Ξ⁰}Pb

10

89 ≘⁰`

⁴⁰_{⊐⁰}Ca

14/03/2017

The properties of hypernuclei

周大

Exp. Data: A. Gal, E. V. Hungerford and D. J. Millener, Rev. Mod. Phys. 88(2016)035004

14/03/2017

國南國大學

The equations of state of neutron star matter

14/03/2017

The properties of neutron star

The particle fractions

14/03/2017

The properties of neutron star

The mass of neutron star

14/03/2017

Outline

- Introduction
- Strangeness quark mean field theory
- Numerical results and discussions
- Summary and Perspectives

Summary and Perspective

- The quark mean field model is extended to strangeness nuclear physics within the pionic and gluonic corrections.
- The binding energies of Λ hypernuclei can be reproduced very well in present framework. The ones of Ξ^0 hypernuclei are also predicted.
- The massive neutron stars are obtained with Λ and hyperon, whose masses are around 2.1M $_{\odot.}$
- The double Λ and Ξ^- hypernuclei will be studied.