Experimental study of double hypernuclei with a hybrid emulsion method at J-PARC

H. Ekawa for the J-PARC E07 Collaboration Kyoto Univ., JAEA

2017.03.12 Strangeness Nuclear Physics 2017 Osaka Electro-Communication University.

Contents

Introduction

- Double hypernuclei
- J-PARC E07 experiment
- KURAMA spectrometer

* E07 2016 Run

- Data taking
- Spectrometer analysis
- Emulsion analysis

Summary

Double hypernuclei

Baryon-Baryon interaction

- (u, d, s) system is described in SU(3)_f symmetry.
- ✤ S=-2 data is very limited.
- Hyperon-Hyperon interaction is difficult to study experimentally.
 - life time : ~10⁻¹⁰s

Double hypernuclei

- Two Λ are bound in a nucleus.
- * $\Lambda\Lambda$ interaction can be extracted.
- sequential weak decay

Emulsion experiment

- effective to detect double hypernuclei
- record decay topology
- < µm resolution</p>

NAGARA event (KEK E373)

 $B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$ $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \text{ MeV} \leftarrow \text{weakly attractive}$

J-PARC E07 experiment

J-PARC E07 experiment

- double hypernuclei search experiment
- hybrid emulsion method
- statistics : KEK E373 x 10
 - 10⁴ Ξ⁻ stop
 - 100 double hypernuclei candidates
 - 10 identified species
- ✤ detect Ξ⁻ atom X ray with Ge detectors

Hybrid emulsion method

predict Ξ^- position and angle with SSD

Ξ^- momentum (simulation)

Emulsion

- size (1stack): 350mm[H] x 345mm[W] x 12mm[T] (13 plates)
- density : ~3.4g/cm³
- 118 stacks
- acceptable particle density : 10⁶/cm²
- elements : C, N, O, H, Ag, Br, ...
- Emulsion stack is packed in cassette.
- refreshed before beam exposure

Emulsion plate (developed)

Emulsion Mover

- Emulsion cassette is moved synchronizing with beam spill.
- Emulsion cassette position is recorded with a few µm resolution.

K1.8 beam line @ J-PARC Hadron Experimental Facility

Target Emulsion Hyperball-X (Ge)

K+

KURAMA spectrometer

KURAMA spectrometer

KURAMA spectrometer construction has been done in May 2016. All detectors are contained in a tent to keep temperature.

KURAMA spectrometer

E07 2016 Run

 We carried out commissioning of KURAMA spectrometer and a part of emulsion exposure in Jun. 2016.

Run end photo @K1.8 counting room

KURAMA Commissioning 5.0 days

- detector check
- Beam through run
- CH₂ target run

Emulsion exposure 4.9 days

- 18 stacks of emulsion (15%)
- 1.5 times larger statistics than KEK E373

Emulsion exposure

- p
 beam was irradiated at 4 corners for SSD-Emulsion alignment
 (pattern matching).
- K⁻ beam was irradiated all effective area except corners.
 - density : ~10⁶/cm²

KURAMA spectrometer analysis

- Momentum of scattered particles are analyzed by Runge-Kutta method.
- K⁺ are clearly identified.

correlation between mass and momentum (scattered particles)

Missing Mass spectrum (CH2 target)

p(K⁻,K+)Ξ⁻ peak is observed on quasi-free component.

h1c Entries 4602 1.37 Mean oreliminar. RMS 0.06534 250 Integral 4602 mass (PDG) 200 1321.71±0.07MeV 150 σ : 14.1 MeV/c²]] 100 50 0 1.3 1.5 1.6 1.1 1.2 1.4 1.7 [GeV/c²]

p(K⁻,K⁺)X Missing Mass

Ξ⁻ detection

- * Ξ^- detection in SSD is important for hybrid emulsion method.
 - dE \cdot position \cdot angle information

Analysis scheme

- 1. tag (K⁻,K⁺) events by spectrometers
- 2. make tracks from high dE hit combinations
- 3. check vertex points
- 4. check angle residual from missing momentum

E angle residual

- * check Ξ^- angle residual from that of missing momentum
- Angle distribution can be understood by fermi motion.
- Sharp peak (H target) is observed in CH₂ target data.
- * Ξ^- is kinematically identified in SSD.

 Ξ^{-} dx/dz residual (CH₂ target)

K- miss

SSD

residual

K+

15

E- dE

- check dE distribution of Ξ^- and K⁺ in SSD after Ξ^- identification
- Data distribution is consistent to simulation.
- Data is broader than simulation because of energy resolution and noise effect.

value is scaled to data by K⁺ peak

SSD-Emulsion connection

Pattern matching dy : dx

Ξ⁻ track in Emulsion

- Emulsion development (18 stacks) has been already done.
- * Ξ^- are found in Emulsion from SSD prediction.
- Hybrid emulsion method is working well !

Ξ^- decay event

Some Ξ⁻ tracks are traced and a decay event are found (Ξ⁻ → Λ + π⁻).
Full automatic scanning will start

 Full automatic scanning will start soon.

Ξ^{-} stop event

E07 2017 Run

- E07 2nd run is planned in Apr. May 2017.
 - 100 stacks of emulsion
 - improve data quality
 - SSD noise reduction \rightarrow DAQ Eff. will be improved
 - target position optimization $\rightarrow \Xi^-$ stop ratio will be improved

Yield estimation (preliminary)

Run	Emulsion	K+	[H]	Ξ ⁻ stop (calc from simulation)
2016	18	1.1 x 10 ⁵	2.6 x 10 ⁴	1600
2017 expected	100	6.6 x 10 ⁵	1.8 x 10 ⁵	12000

We can achieve $>10^4 \Xi^-$ stop events with full statistics !

- J-PARC E07 is a double hypernuclei search experiment with a hybrid emulsion method.
- E07 1st run was carried out in Jun. 2016 and 18 stacks of emulsion has been exposed (15% of all emulsion).
- * Ξ^- are identified in SSD and some of them are traced in emulsion.
- Remaining emulsion (100 stacks) will be exposed in Apr. May 2017 and we will achieve 10 times larger statistics than KEK E373.