Hypernuclei spectroscopy via the real photo-induced reaction

Atsushi Tokiyasu ELPH, Tohoku University

> SNP2017 @ Osaka Mar. 12th, 2017.

Abstract

- Recently, we proposed a new experiment (FOREST Upgrade) to perform a hypernuclei spectroscopy via the real photo-induced reaction.
- By using a EM calorimeter and a spectrometer at forward angle, we can study hypernuclei via the $A(\gamma, K^+)X$ reaction.
- Physics motivation and the feasibility of the experiment will be discussed for the following reaction:
 - ${}^{12}C(\gamma, K^+){}^{12}{}_{\Lambda}B$
 - ⁴He $(\gamma, K^+)^4_{\Lambda}$ H

<u>Outline</u> 1. photo-induced reaction 2. FOREST Upgrade project 3. ${}^{12}C(\gamma, K^+){}^{12}{}_{\Lambda}B$ 4. ${}^{4}He(\gamma, K^+){}^{4}{}_{\Lambda}H$

photo-induced reaction

Hypernuclei production via (γ, K^+)

☆ property of the (γ ,K⁺) reaction.

 $1.\Lambda$ is produced via EM int.

2. convert proton to Λ

3.Large momentum transfer

4. Spin-flip amplitude (J $_{\gamma} = 1$)

Hypernuclei production by (γ, K^+)

Hypernuclei production by (γ, K^+)

 \Rightarrow property of the (γ ,K⁺) reaction.

1. Λ is produced via EM int. →Free from ISI, FSI

2. convert proton to Λ →neutron rich hypernuclei

3.Large momentum transfer

4. Spin-flip amplitude (J $_{\gamma} = 1$)

Hypernuclei production by (γ , K^+)

☆ property of the (γ ,K⁺) reaction.

1.∧ is produced via EM int. →Free from ISI, FSI

2. convert proton to Λ →neutron rich hypernuclei

3.Large momentum transfer→deep bound states

4. Spin-flip amplitude (J $_{\gamma} = 1$)

Hypernuclei production by (γ, K^+)

☆ property of the (γ ,K⁺) reaction.

1. Λ is produced via EM int. →Free from ISI, FSI

2. convert proton to Λ →neutron rich hypernuclei

3.Large momentum transfer →deep bound states

4. Spin-flip amplitude (J $_{\gamma} = 1$) →Unnatural parity state

Hypernuclei production by (γ, K^+)

 \Rightarrow property of the (γ ,K⁺) reaction.

1. Λ is produced via EM int. →Free from ISI, FSI

2. convert proton to Λ →neutron rich hypernuclei

3.Large momentum transfer →deep bound states

4. Spin-flip amplitude (J $_{\gamma} = 1$) →Unnatural parity state Complementary to Hadron-induced reaction!

-Theoretical calculation :1980s ~ *But*.

- small cross section.
- No facility for high intensity beam.
- (e,e'K⁺) reaction

virtual photon vs real photon

spin	γ 1	+	р 1/2	\rightarrow	K+ 0	+	Λ 2	
Virtual	3	X	2	X	1	X	2	= 12
Real	2	X	2	X	1	X	2	= 8

Merit:

- simple elementary process.
- High transparency of $\gamma \rightarrow \log$ target, low background
- coincidence measurement. (Production and decay)

Demerit (compared to e⁻ beam):

- poor mass resolution
- low intensity beam

FOREST Upgrade

FOREST Upgrade

ELPH @ Tohoku University

- 1.3 GeV Electron Synchrotron
- I = 30 mA
- γ beam produced via bremsstrahlung process
- Tagged photon ($E\gamma = 0.8 1.2 \text{ GeV}$)
- FOREST (this talk), NKS2 (Dr. Nagao's talk)

FOREST detector

- 4π EM calorimeter (> 90 %)
- CsI + Lead/SciFi + Lead glass
- N* search in the γ n \rightarrow η n reaction

☆FOREST Upgrade Project

- 1. Installation of Fwd spectrometer (K⁺ detection)
- 2. New Tagger system : Improve E_{γ} resolution ($\Delta E_{\gamma} \sim 1 \text{MeV}$)
- \rightarrow (γ , K⁺) by Missing Mass Method

Fwd Spectrometer

- Detection of charged particles at 0 degrees
- Acceptance (vert $\pm 0.6^{\circ}$, hori $\pm 1.2^{\circ}$)
- $BL = 1.37 \text{ T} \cdot \text{m}$
- Resolution ~ $\Delta p/p < 10^{-3}$

under study

Tagger Upgrade

	Current Setup	New Setup
$\Delta E/ch$	0.5 – 2.5 MeV (σ)	$\sim 1 \text{ MeV}(\sigma)$
ΔΤ	$0.4 - 0.6 \text{ ns} (\sigma)$	0.2 n (σ)

Physics Program of FOREST Upgrade

☆By detecting charged particles at a forward angle, many physics channels are accessible!

- d (γ, p)η n
 - Scattering Length measurement

- Λ -n interaction measurement
- $C(\gamma, p) {}_{\eta}B$
 - η mesic nuclei search

Commissioning run

TOF Spectrum

- Beam time: 2017 Jan 12h – Jan 16th
- Target: Liquid Deuterium
- p/ π separation
- Physics run will start from next FY

$^{12}C(\gamma, K^+)^{12}AB$

ES132 @ INS-TAGX

Yield Estimation

Ref) PTPS117.123 Notice date 1994

Expected Spectrum

The missing mass spectrum was obtained by MC simulation.

- $E\gamma = 1.1$ GeV fix
- 100 day beamtime (current setup)
- Energy straggling in Target $\Delta E/E \ll 10^{-3}$ %, w.o. energy loss correction
- Multiple Scattering angle is not considered.
- scattering angle was assumed to be 0 degree.

Coincidence Measurement

Measurement of Decay product of hypernuclei with FOREST

- Free:
 - $\Lambda \rightarrow N\pi$
- Hyper nuclei :
 - $\Lambda \rightarrow N\pi$ Mesonic Weak decay
 - $\Lambda N \rightarrow NN$
 - $\Lambda NN \rightarrow NNN$
- Non-Mesonic Weak decay
- Exp : KEK-E462/E508
- $\Gamma_p/\Gamma n \sim 0.5$ (solve the NMWD puzzle)
- Measurement of $\Lambda NN \rightarrow NNN$ is awaited.
- PID (n/p/π), Large acceptance (non-back-to-back event)
 →Detection with FOREST
 - (> 10 times statistic)

$^{4}\text{He}(\gamma, \text{K}^{+})^{4}{}_{\Lambda}\text{H}$

Charge Symmetry breaking

⁴He (γ , K⁺) ⁴H reaction

FOREST Upgrade experiment 4π EM calorimeter + Forward spectrometer + New Tagger System

Hypernuclei spectroscopy via the (γ , K+) reaction. ${}^{12}C(\gamma, K^+){}^{12}{}_{\Lambda}B \rightarrow \text{coincidence measurement (NMWD)}$ ${}^{4}\text{He}(\gamma, K^+){}^{4}{}_{\Lambda}H \rightarrow \text{CSB test by measuring } \gamma\text{-ray}$

Elementary cross section

SAPHIR CBELSA/TAPS GRAAL CLAS LEPS

N* contribution

 $d\sigma/dcos\theta \sim 3\mu b$

Ref) PRC73, 035214

Hypernuclei

Λ-N interactionUnified Baryon-BaryonInteraction

-impurity effect: Shrink -glue like role extraordinaly neutron rich $^{7}_{\Lambda}$ H etc

g-factor in medium :chiral symmetry restoration? (g=eh/2mc)

- Experiment \rightarrow K⁺ trigger, Signal as peak structure, low physics BG
- Theory \rightarrow Shell model, DWIA ...
- Recent Progress
 - neutron rich Hypernuclei : Unstable Hypernuclei
 - Light Hipernuclei : CSB, precise information on 3-body int
 - S=-2 Hypernuclei : Ξ -n int., Dibaryon?
 - Excited Hypernuclei : $\Lambda(1405)$ -Nuclei, KaonicNuclei?
- Reaction : (K^-, π^-) , (π^+, K^+) , (e, e^*K^+) , Heavy Ion... + (γ, K^+)