2017/3/14 SNP2017

Baryon-Baryon interaction and neutron-star EOS

Y. Yamamoto

RIKEN Nishina center

EOS in neutron-star matter

Based on BHF theory

Hyperon puzzle !

Massive (2M $_{\odot}$) neutron stars 2010 PSR J1614-2230 (1.97±0.04)M $_{\odot}$ 2013 PSR J0348-0432 (2.01±0.04)M $_{\odot}$

Softening of EOS by hyperon mixing

Our approach : Try to solve the hyperon puzzle by Universal Multi-Baryon Repulsion on the basis of terrestrial data Our approach to neutron-star matter starts from the BB interaction model

Nijmegen Extended Soft-Core Model (ESC)Proposed by SU₃ invariant (NN and YN) interaction

A model of Universal Multi-Baryon Repulsion Multi-Pomeron Exchange Potential (MPP) Same repulsions in all baryonic channels NNN, NNY, NYY, YYY

$$V_{\text{eff}}^{(4)}(r) = g_P^{(4)}(g_P)^4 \frac{\rho^2}{\mathcal{M}^8} F(r),$$

$$F(r) = \frac{1}{4\pi} \frac{4}{\sqrt{\pi}} \left(\frac{m_P}{\sqrt{2}}\right)^3 \exp\left(-\frac{1}{2}m_P^2 r^2\right)$$

Effective two-body potential from MPP (3- & 4-body potentials)

Why MPP ?

Decisive superiority of our approach to universal repulsion

MPP works among everything (not only N,Y, but also \triangle , K⁻, q, etc)

MPP prevent softening of EOS from everything

expect

Three-Nucleon attraction (TNA) phenomenological

Both MPP and TNA are needed to reproduce nuclear saturation property and Nucleus-Nucleus scattering data

(MPP is essential for Nucleus-Nucleus scattering data)

density-dependent two-body attraction

 $V_A(r;\rho) = V_0 \exp[-(r/2.0)^2]\rho \exp(-\eta\rho)(1+P_r)/2$

Many-body repulsive effect in high density region (up to $2\rho_0$)

Nucleus-Nucleus scattering data with G-matrix folding potential

Y. Yamamoto, T. Furumoto, N. Yasutake and Th. A. Rijken: Phys. Rev. C 88 (2013) 022801 (R).

$^{16}O + ^{16}O$ elastic scattering cross section at E/A = 70 MeV

Three parameter sets

 $V_A(r;\rho) = V_0 \exp[-(r/2.0)^2] \rho \exp(-\eta\rho) (1+P_r)/2$

$$\begin{array}{ll} \mbox{diffractive production of showers of particles} & g_P^{(3)} = 1.95 \sim 2.6 \\ pp \rightarrow pX & g_P^{(4)} = 33 \sim 228 \end{array} \begin{array}{l} \mbox{Suggesting} \\ \mbox{MPa} \end{array}$$

$$\begin{split} E_{sym}(\rho) &= \frac{E}{A}(\rho, \beta = 1) - \frac{E}{A}(\rho, \beta = 0) \\ L &= 3\rho_0 \left[\frac{\partial E_{sym}(\rho)}{\partial \rho} \right]_{\rho = \rho_0} \qquad \eta = (KL^2)^{1/3} \\ K &= 9\rho_0^2 \left[\frac{d^2}{d\rho^2} \frac{E}{A}(\rho, \beta = 0) \right]_{\rho = \rho_0} \qquad \text{by Sotani} \\ \beta &= \frac{\rho_n - \rho_p}{\rho_n + \rho_p} \\ & \text{Saturation parameters} \end{split}$$

	$ ho_0$	E/A	E_{sym}	L	K	η
	(fm^{-3})	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
MPa	0.155	-16.0	31.3	60.7	270	99.8
MPb	0.155	-16.0	31.3	60.2	254	97.3
MPb^+	0.155	-16.0	33.3	73.7	280	115

For example, AV8'+UIX : E_{sym} =35.1 MeV L=63.6 MeV (Gandolfi et al.)

MPa including 3- and 4-body MPP : MPb including 3-body MPP only MPb⁺ MPb+ T-dependent MPP

by solving TOV eq.

with n+p β -stable matter

Hyperon-Mixed Neutron-Star Matter using YN & YY interaction model

ESC08c consistent with almost all experimental data of hypernuclei (S=-1,-2)

- **MPP** universal in all BB channels
- **TBA** given in S=0 channel → ? in S=-1,-2 channel

(ESC+MPP+TBA) model should be tested in hypernuclei

hyperonic sector

Y-nucleus folding potential derived from YN G-matrix interaction G(r; k_F)

$$\begin{aligned} U_{Y}(\mathbf{r},\mathbf{r}') &= U_{dr} + U_{ex} \\ U_{dr} &= \delta(\mathbf{r} - \mathbf{r}') \int d\mathbf{r}'' \rho(\mathbf{r}'') V_{dr}(|\mathbf{r} - \mathbf{r}''|; \langle k_F \rangle) \\ U_{ex} &= \rho(\mathbf{r},\mathbf{r}') V_{ex}(|\mathbf{r} - \mathbf{r}'|; \langle k_F \rangle) \\ V_{dr} &= \frac{1}{2(2t_{Y} + 1)(2s_{Y} + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} + G_{TS}^{(-)}] \\ V_{ex} &= \frac{1}{2(2t_{Y} + 1)(2s_{Y} + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} - G_{TS}^{(-)}] \\ \\ \hline \mathbf{Averaged}_{F} \mathbf{Approximation} \\ \langle \rho \rangle &= \langle \phi_{Y}(r) | \rho(r) | \phi_{Y}(r) \rangle \\ \langle k_F \rangle &= (1.5\pi^{2} \langle \rho \rangle)^{1/3} \end{aligned}$$
 calculated self-consistently

Mixed density $\rho(\mathbf{r}_1, \mathbf{r}_2) = \sum_j \varphi_j^*(\mathbf{r}_1) \varphi_j(\mathbf{r}_2)$ obtained from SkHF w.f.

 V_0 and $\int V_A(r;\rho) = V_0 \exp[-(r/2.0)^2] \rho \exp(-\eta\rho)(1+P_r)/2$

	$-B_{\Lambda}$ based	l on ESC <mark>1</mark> 4	
	V_{BB} only	w/ MBE	$-B_{\Lambda}^{exp}$ (including)
$^{9}_{\Lambda}$ Li(*)	-7.6	-8.1	$-8.50 \pm 0.12[28]$
$^{9}_{\Lambda}\mathrm{Be}$	-7.7	-8.1	$-6.71 \pm 0.04[29]$ MPP+1BA
$^{9}_{\Lambda}\mathrm{B}(*)$	-7.7	-8.2	$-8.29 \pm 0.18[28]$
$^{10}_{\Lambda}\mathrm{Be}(*)$	-8.6	-9.0	$-9.11 \pm 0.22[26],$
			$-8.55 \pm 0.18[33]$
$^{10}_{\Lambda} B(*)$	-8.7	-9.1	$-8.89 \pm 0.12[29]$
$^{11}_{\Lambda}\mathrm{B}(*)$	-9.7	-10.0	$-10.24 \pm 0.05 [29]$
$^{12}_{\Lambda}{ m B}(*)$	-11.0	-11.3	$-11.37 \pm 0.06[29],$
			$-11.38 \pm 0.02[32]$
$^{12}_{\Lambda}C(*)$	-10.8	-11.0	$-10.76 \pm 0.19[28]$
$^{13}_{\Lambda}C(*)$	-11.5	-11.7	$-11.69 \pm 0.19[26]$
$^{14}_{\Lambda}\mathrm{C}(*)$	-12.4	-12.5	$-12.17 \pm 0.33[28]$ fitte d within
$^{15}_{\Lambda}N$	-12.9	-12.9	-13.59 ± 0.15 [29] TILLEO WITHIN
$^{16}_{\Lambda} O(*)$	-13.3	-13.0	$-12.96 \pm 0.05[27]$ a few hundred ke
$^{19}_{\Lambda}$ O	-14.8	-14.3	_
$^{21}_{\Lambda}$ Ne	-15.8	-15.5	_
$^{25}_{\Lambda}{ m Mg}$	-17.0	-16.1	_
$^{27}_{\Lambda}Mg$	-17.5	-16.2	_
$^{28}_{\Lambda}$ Si	-17.8	-16.6	$-17.1 \pm 0.02[24, 39]^{\dagger}$
$^{32}_{\Lambda}S(*)$	-19.4	-17.6	$-18.0 \pm 0.5 [25]^{\dagger}$
$^{40}_{\Lambda}$ K	-21.5	-19.4	_
$^{40}_{\Lambda}Ca(*)$	-21.3	-19.3	$-19.24 \pm 1.1[30]^{\dagger}$
$^{41}_{\Lambda}$ Ca	-21.5	-19.5	_
$^{48}_{\Lambda}{ m K}$	-22.6	-20.2	_
$^{51}_{\Lambda}V(*)$	-23.5	-20.3	$-20.51 \pm 0.13[31]^{\dagger}$
$^{59}_{\Lambda}$ Fe	-24.6	-21.7	_
χ^2 for (*)	87.7	4.63	

HyperAMD by M. Isaka

Σ-nucleus interaction is strongly repulsive !!!

T. Harada, Y. Hirabayashi / Nuclear Physics A 759 (2005) 143-

In various RMF models with U $_{\Sigma}$ =20–30 MeV Σ^{-} mixing does not occur

Pauli-fo r bidden state

model	Т	$^{1}S_{0}$	$^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
ESC08c	1/2	10.6	-22.1	2.0	2.1	-5.1	-0.2	-0.6	
	3/2	-12.6	30.2	-3.4	-2.1	5.2	-3.2	-0.2	+0.8
ESC08b	1/2	10.3	+25.5	1.4	2.5	-5.9	0.3	-0.8	
	3/2	-10.4	52.4	-3.0	-2.7	5.9	-4.4	-0.1	+19.8

U_{WS} ≈ 20-30 MeV

How different two interactions in ²⁸S(K⁻,K⁺) spectrum ?

 $U_{\Sigma}(ESC08c)$ =+0.8 MeV \rightarrow too weak repulsion ?

 $^{28}\text{Si}(\pi^-, K^+)$ reaction at $p_{\pi} = 1.20 \text{ GeV}/c$ (6°),

Calculation with Σ -nucleus LDA potential given by ΣN G-matrices

MPP=MPa without TNA

We use **ESC08b** for ΣN parts in MPa/b (TBA=0)

Hyperon-mixed Neutron-Star matter with universal TBR (MPP)

EoS of n+p+ Λ + Σ +e+ μ system

ESC(YN) + MPP(YNN) + TBA(YNN)

Hyperon-mixed neutron matter

Starting from single particle potentials calculated with the <u>G-matrix theory</u>:

$$\begin{split} U_B(k) &= \sum_{B'} U_B^{(B')}(k) \quad \text{with} \quad B, B' = n, p, \Lambda, \Sigma^- \\ U_B^{(B')} \text{ means a single particle potential of } B \text{ particle in } B' \text{ matter} \\ \hline \mathbf{Energy \ density} \\ \varepsilon &= \varepsilon_{mass} + \varepsilon_{kin} + \varepsilon_{pot} \\ &= 2\sum_B \int_0^{k_F^B} \frac{d^3k}{(2\pi)^3} \left[M_B - M_n + \frac{\hbar^2 k^2}{2M_B} + \frac{1}{2} U_B(k) \right] \\ \varepsilon_{mass} &= \sum (M_B - M_n) \rho_B \end{split}$$

$$\varepsilon_{kin} = \sum_{B} \frac{3}{5} \frac{\hbar^2 (k_F^B)^2}{2M_B} \rho_B = \sum_{B} \frac{3}{5} \frac{\hbar^2}{2M_B} (3\pi^2)^{2/3} (\rho_B)^{5/3}$$
$$\varepsilon_{pot} = 2\sum_{B} \int_0^{k_F^B} \frac{d^3k}{(2\pi)^3} \frac{1}{2} U_B(k) = \frac{1}{2} \sum_{B} \int_0^{k_F^B} \frac{k^2 dk}{\pi^2} U_B(k)$$

Chemical potential : $\mu_B = \frac{\partial \varepsilon}{\partial \rho_B}$

В

 ε

Chemical potential : $\mu_B = \frac{\partial \varepsilon}{\partial \rho_B}$

Chemical equilibrium conditions:

 $\mu_n = \mu_p + \mu_e$ $\mu_e = \mu_\mu$ $\mu_{\Sigma^-} = \mu_n + \mu_e$ $\mu_\Lambda = \mu_n$

Baryon-number conservation : $y_n + y_p + y_\Lambda + y_{\Sigma^-} = 1$ Charge neutrality : $y_p = y_{\Sigma^-} + y_e + y_\mu$ Hyperon components are highly model-dependent Results from special modeling should not be generalized

Hyperon Onset Density in neutron matterstimated by

$$\begin{array}{l} U_{\Lambda}(0) + (M_{\Lambda} - M_{n}) = \mu_{n} \\ & \text{176 MeV} \\ U_{\Sigma^{-}}(0) + (M_{\Sigma^{-}} - M_{n}) = \mu_{n} + \mu_{e} \\ & \text{258 MeV} \\ U_{\Xi^{-}}(0) + (M_{\Xi^{-}} - M_{n}) = \mu_{n} + \mu_{e} \\ & \text{382 MeV} \end{array}$$

RMF models

insufficient

 μ_e makes Σ^- mixing easier than Λ mixing This merit is partially canceled by positive $U_{\Sigma}(0)$

Large M_{Ξ} - M_n is disadvantageous for Ξ^- mixing in spite of merits by μ_e and negative $U_{\Xi}(0)$

In our model

 U_{Σ} >0 does not lead to no Σ^{-} mixing automatically nnn repulsion in μ_n works favorably to Σ mixing, even if U_{Σ} >0

 $2M_{\odot}$ is (not) obtained by MPa (MPb and MPb⁺)

Effect of Σ⁻ mixing is more remarkable than that of Λ mixing sensitive to symmetry energy in nuclear part slope parameter

E⁻ mixing in neutron-star matter based on ESC+MPP+TBA model

KISO event is <u>uniquely identified</u> as

$$\Xi^- + {}^{14}\mathrm{N} \rightarrow {}^{10}_{\Lambda}\mathrm{Be}^{+} + {}^{5}_{\Lambda}\mathrm{He}$$

with $B_{\Lambda}(^{10}_{\Lambda}\text{Be})=8.60\pm0.07 \text{ MeV} @ (e, e'K^+) \text{ exp. JLab E05-115}$ $B_{\Xi^-}=3.87\pm0.13 \text{ MeV}$

assuming ${}^{10}_{\Lambda}$ Be in first excited state, $B_{\Xi^-} = 1.11 \pm 0.25$ MeV such a value of B_{Ξ^-} is only by the Ξ^- capture from 2P state 1.03 ± 0.18 MeV by Nakazawa

ESC modeling

BB interactions in all baryon channels (NN, Λ N, Σ N, Ξ N, ---) are given by single parameter set simultaneously

Almost all features of hypernuclear data are reproduced well

No ad hoc parameter for ΞN sector

 $U_{\Xi}(\rho_0)$ and partial wave contributions for ESC2016

	T	$^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	U_{Ξ}	Γ^c_{Ξ}	
ESC2016	0	1.7	-7.6	-0.2	0.5	1.5	-1.9			
	1	9.1	-9.8	1.2	0.8	-2.2	0.3	-6.6	6.7	K _F =1.35

Table 1: Calculated quantities in $\Xi^- + {}^{12}C$ and $\Xi^- + {}^{14}N$ systems for ESC2016 and ESC2016+MPP Binding energies B_{Ξ^-} and conversion width $\Gamma_{\Xi^-}^c$ are in MeV. R.m.s. radius $\sqrt{\langle r^2 \rangle}$ is in fm.

$\Xi^- + {}^{12}C$		$\mathrm{ESC2016}$	+MPP	exp
1S	B_{Ξ^-}	5.11	4.02	
	$\Gamma_{\Xi^{-}}^{c}$	3.02	2.65	
	$\sqrt{\langle r^2 \rangle}$	2.87	3.16	
2P	B_{Ξ^-}	0.83	0.76	0.82 ± 0.14
	$\Gamma_{\Xi^{-}}^{c}$	0.92	0.87	
	$\sqrt{\langle r^2 \rangle}$	6.42	6.84	
$\Xi^{-}+^{14}N$		ESC2016	+MPP	\exp
1S	B_{Ξ^-}	6.23	5.05	
	$\Gamma_{\Xi^{-}}^{c}$	3.65	3.24	
	$\sqrt{\langle r^2 \rangle}$	2.78	3.02	
2P	B_{Ξ^-}	1.55	1.38	1.03 ± 0.18
	$\Gamma_{\Xi^{-}}^{c}$	1.60	1.48	
	1 23	1.05	F 1 F	

with G-matrix folding model

with $\Lambda \Sigma^{-}\Xi^{-}$ mixing

 $2M_{\odot}$ is (not) obtained by MPa (MPb)

with $\Lambda \Sigma^{-}\Xi^{-}$ mixing

Neutron-star mass as a function of central density

Softening by Σ^{-} mixing is stronger than those by Λ and Ξ^{-} mixing

If Σ^{-} mixing is hindered by some additional Σ nn repulsion giving U₅ > +30MeV $2M_{\odot}$ is reproduced by MPb modeling under Λ and Ξ^{-} mixing (b)JLM ESC8b+MPH

Non mixing of Σ^{-} is a possible solution for hyperon puzzle

 $x^2/53 = 0.64$

300

350

 ω (MeV)

400

450

0.0 250

Conclusion

ESC+MPP+TBA model

* MPP strength determined by analysis for ¹⁶O+¹⁶O scattering

- * TNA adjusted phenomenologically to reproduce saturation properties
- * Consistent with hypernuclear data
- * No ad hoc parameter to stiffen EOS
- MPa set including 3- and 4-body repulsions leads to massive neutron stars with 2M_o in spite MPbsight if including for the pulsible by the percention of the set of the pulsible of the pulsion of the
 - those by Λ or Ξ -mixing
- Softening of EOS by E-mixing is weak